These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32689563)

  • 41. The stomatal response to rising CO2 concentration and drought is predicted by a hydraulic trait-based optimization model.
    Wang Y; Sperry JS; Venturas MD; Trugman AT; Love DM; Anderegg WRL
    Tree Physiol; 2019 Aug; 39(8):1416-1427. PubMed ID: 30949697
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genotypic variation in physiological and growth responses of Populus tremuloides to elevated atmospheric CO2 concentration.
    Wang X; Curtis PS; Pregitzer KS; Zak DR
    Tree Physiol; 2000 Sep; 20(15):1019-28. PubMed ID: 11305456
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Responses of Onobrychis viciaefolia Scop and soil nitrogen contents to elevated atmospheric CO2 concentration].
    Zhou Z; Shangguan Z
    Ying Yong Sheng Tai Xue Bao; 2006 Nov; 17(11):2175-8. PubMed ID: 17269349
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural adjustments in resprouting trees drive differences in post-fire transpiration.
    Nolan RH; Mitchell PJ; Bradstock RA; Lane PN
    Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO
    Houshmandfar A; Fitzgerald GJ; O'Leary G; Tausz-Posch S; Fletcher A; Tausz M
    Physiol Plant; 2018 Aug; 163(4):516-529. PubMed ID: 29205382
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem.
    Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD
    Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Elevated CO
    Coleman JS; McConnaughay KD; Bazzaz FA
    Oecologia; 1993 Mar; 93(2):195-200. PubMed ID: 28313607
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
    Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G
    Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere.
    Volin JC; Kruger EL; Lindroth RL
    Tree Physiol; 2002 May; 22(7):435-48. PubMed ID: 11986047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen.
    Kubiske ME; Zak DR; Pregitzer KS; Takeuchi Y
    Tree Physiol; 2002 Apr; 22(5):321-9. PubMed ID: 11960756
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transpiration modulates phosphorus acquisition in tropical tree seedlings.
    Cernusak LA; Winter K; Turner BL
    Tree Physiol; 2011 Aug; 31(8):878-85. PubMed ID: 21856654
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitrogen nutrition and temporal effects of enhanced carbon dioxide on soybean growth.
    Vessey JK; Henry LT; Raper CD
    Crop Sci; 1990; 30(2):287-94. PubMed ID: 11537167
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?
    Wheeler RM; Mackowiak CL; Yorio NC; Sager JC
    Ann Bot; 1999 Mar; 83(3):243-51. PubMed ID: 11541549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Canopy development and hydraulic function in Eucalyptus tereticornis grown in drought in CO
    Atwell BJ; Henery ML; Rogers GS; Seneweera SP; Treadwell M; Conroy JP
    Funct Plant Biol; 2008 Jan; 34(12):1137-1149. PubMed ID: 32689444
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.
    Samuelson LJ; Stokes TA; Coleman MD
    Tree Physiol; 2007 May; 27(5):765-74. PubMed ID: 17267367
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions : II. The significance of leaf water status and internal carbon dioxide concentration.
    Schulze E-; Lange OL; Kappen L; Evenari M; Buschbom U
    Oecologia; 1975 Sep; 18(3):219-233. PubMed ID: 28308679
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Mechanisms Responsible for N Deficiency in Well-Watered Wheat Under Elevated CO
    Fan J; Halpern M; Yu Y; Zuo Q; Shi J; Fan Y; Wu X; Yermiyahu U; Sheng J; Jiang P; Ben-Gal A
    Front Plant Sci; 2022; 13():801443. PubMed ID: 35251079
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest.
    Taylor BN; Strand AE; Cooper ER; Beidler KV; Schönholz M; Pritchard SG
    Tree Physiol; 2014 Sep; 34(9):955-65. PubMed ID: 25056092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE.
    Ward EJ; Oren R; Bell DM; Clark JS; McCarthy HR; Kim HS; Domec JC
    Tree Physiol; 2013 Feb; 33(2):135-51. PubMed ID: 23243030
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning.
    Fanourakis D; Carvalho SM; Almeida DP; Heuvelink E
    Physiol Plant; 2011 Jul; 142(3):274-86. PubMed ID: 21457269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.