These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32689563)

  • 61. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.
    Morgan JA; Pataki DE; Körner C; Clark H; Del Grosso SJ; Grünzweig JM; Knapp AK; Mosier AR; Newton PC; Niklaus PA; Nippert JB; Nowak RS; Parton WJ; Polley HW; Shaw MR
    Oecologia; 2004 Jun; 140(1):11-25. PubMed ID: 15156395
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Responses of diurnal variation of flag-leaf photosynthesis and photosynthetic pigment content to elevated atmospheric CO
    Yuan MM; Zhu JG; Liu G; Wang WL
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):167-175. PubMed ID: 29692025
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Morphology and Stomatal Function of Douglas Fir Needles Exposed to Climate Change: Elevated CO2 and Temperature.
    Apple ME; Olszyk DM; Ormrod DP; Lewis J; Southworth D; Tingey DT
    Int J Plant Sci; 2000 Jan; 161(1):127-132. PubMed ID: 10648202
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization in a poplar plantation.
    Calfapietra C; Tulva I; Eensalu E; Perez M; De Angelis P; Scarascia-Mugnozza G; Kull O
    Environ Pollut; 2005 Oct; 137(3):525-35. PubMed ID: 16005764
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evapotranspiration of beech stands and transpiration of beech leaves subject to atmospheric CO(2) enrichment.
    Overdieck D; Forstreuter M
    Tree Physiol; 1994; 14(7_9):997-1003. PubMed ID: 14967665
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of an Animal-Derived Biostimulant on the Growth and Physiological Parameters of Potted Snapdragon (
    Cristiano G; Pallozzi E; Conversa G; Tufarelli V; De Lucia B
    Front Plant Sci; 2018; 9():861. PubMed ID: 29973949
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stomatal conductance bears no correlation with transpiration rate in wheat during their diurnal variation under high air humidity.
    Zhang X; Mei X; Wang Y; Huang G; Feng F; Liu X; Guo R; Gu F; Hu X; Yang Z; Zhong X; Li Y
    PeerJ; 2020; 8():e8927. PubMed ID: 32391197
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of elevated root zone CO2 on xerophytic shrubs in re-vegetated sandy dunes at smaller spatial and temporal scales.
    Lei H; Zhishan Z
    Springerplus; 2015; 4():299. PubMed ID: 26140263
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An Insight Into the Effect of Organic Amendments on the Transpiration Efficiency of Wheat Plant in a Sodic Duplex Soil.
    Wang X; Sale P; Franks A; Jin J; Krohn C; Armstrong R; Tang C
    Front Plant Sci; 2021; 12():722000. PubMed ID: 34745159
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced decreases in rice evapotranspiration in response to elevated atmospheric carbon dioxide under warmer environments.
    Ikawa H; Hasegawa T; Kumagai E; Wakatsuki H; Sekiyama Y; Nagano AJ; Kuwagata T
    Plant Cell Environ; 2024 Sep; 47(9):3514-3527. PubMed ID: 38922904
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Heat stress decreased transpiration but increased evapotranspiration in gerbera.
    Yang Z; Jiang Y; Qiu R; Gong X; Agathokleous E; Hu W; Clothier B
    Front Plant Sci; 2023; 14():1119076. PubMed ID: 36743492
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Method for efficient calculating earth pressure of retaining wall considering plant transpiration.
    Zhang J; Hu H; Fu W; Peng J; Li F; Ding L
    Sci Rep; 2023 Sep; 13(1):15366. PubMed ID: 37717091
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of Chemical Closure of Stomata on Transpiration in Varied Soil and Atmospheric Environments.
    Shimshi D
    Plant Physiol; 1963 Nov; 38(6):709-12. PubMed ID: 16655856
    [No Abstract]   [Full Text] [Related]  

  • 74. EFFECTS OF VARIATIONS IN THE ROOT-LEAF RATIO ON TRANSPIRATION RATE.
    Parker J
    Plant Physiol; 1949 Oct; 24(4):739-43. PubMed ID: 16654260
    [No Abstract]   [Full Text] [Related]  

  • 75. Modification of Plant Transpiration Rate with Chemicals.
    Smith D; Buchholtz KP
    Plant Physiol; 1964 Jul; 39(4):572-8. PubMed ID: 16655965
    [No Abstract]   [Full Text] [Related]  

  • 76. TRANSPIRATION AS MODIFIED BY POTASSIUM.
    Snow AG
    Plant Physiol; 1936 Jul; 11(3):583-94. PubMed ID: 16653366
    [No Abstract]   [Full Text] [Related]  

  • 77. THE COHESION THEORY OF TRANSPIRATION.
    Hungate RE
    Plant Physiol; 1934 Oct; 9(4):783-94. PubMed ID: 16652917
    [No Abstract]   [Full Text] [Related]  

  • 78. SIGNIFICANCE OF TRANSPIRATION.
    Clements HF
    Plant Physiol; 1934 Jan; 9(1):165-72. PubMed ID: 16652869
    [No Abstract]   [Full Text] [Related]  

  • 79. SCHLOESING'S EXPERIMENTS ON THE RELATION OF TRANSPIRATION TO THE TRANSLOCATION OF MINERALS.
    Loomis WE
    Plant Physiol; 1929 Jan; 4(1):158-60. PubMed ID: 16652598
    [No Abstract]   [Full Text] [Related]  

  • 80. Effects of three patterns of elevated CO2 in single and multiple generations on photosynthesis and stomatal features in rice.
    Yang K; Huang Y; Yang J; Lv C; Hu Z; Yu L; Sun W
    Ann Bot; 2023 Apr; 131(3):463-473. PubMed ID: 36708194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.