These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32689859)

  • 1. Intracoronary Saline-Induced Hyperemia During Coronary Thermodilution Measurements of Absolute Coronary Blood Flow: An Animal Mechanistic Study.
    Adjedj J; Picard F; Collet C; Bruneval P; Fournier S; Bize A; Sambin L; Berdeaux A; Varenne O; De Bruyne B; Ghaleh B
    J Am Heart Assoc; 2020 Aug; 9(15):e015793. PubMed ID: 32689859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saline-Induced Coronary Hyperemia: Mechanisms and Effects on Left Ventricular Function.
    De Bruyne B; Adjedj J; Xaplanteris P; Ferrara A; Mo Y; Penicka M; Floré V; Pellicano M; Toth G; Barbato E; Duncker DJ; Pijls NH
    Circ Cardiovasc Interv; 2017 Apr; 10(4):. PubMed ID: 28400462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of Absolute Coronary Blood Flow Measurements to Assess Microvascular Function: In Vivo Validation of Hyperemia and Higher Infusion Speeds.
    Minten L; Bennett J; McCutcheon K; Oosterlinck W; Algoet M; Otsuki H; Takahashi K; Fearon WF; Dubois C
    Circ Cardiovasc Interv; 2024 Jul; 17(7):e013860. PubMed ID: 38682331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saline-induced coronary hyperemia with continuous intracoronary thermodilution is mediated by intravascular hemolysis.
    Gallinoro E; Candreva A; Fernandez-Peregrina E; Bailleul E; Meeus P; Sonck J; Bermpeis K; Bertolone DT; Esposito G; Paolisso P; Heggermont W; Adjedj J; Barbato E; Collet C; De Bruyne B
    Atherosclerosis; 2022 Jul; 352():46-52. PubMed ID: 35667163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Thermodilution Method to Assess Coronary Flow Reserve.
    Gutiérrez-Barrios A; Izaga-Torralba E; Rivero Crespo F; Gheorghe L; Cañadas-Pruaño D; Gómez-Lara J; Silva E; Noval-Morillas I; Zayas Rueda R; Calle-Pérez G; Vázquez-García R; Alfonso F
    Am J Cardiol; 2021 Feb; 141():31-37. PubMed ID: 33220317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodilution-derived volumetric resting coronary blood flow measurement in humans.
    Gallinoro E; Candreva A; Colaiori I; Kodeboina M; Fournier S; Nelis O; Di Gioia G; Sonck J; van 't Veer M; Pijls NHJ; Collet C; De Bruyne B
    EuroIntervention; 2021 Oct; 17(8):e672-e679. PubMed ID: 33528358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate assessment of coronary blood flow by continuous thermodilution technique: Validation in a swine model.
    Adjedj J; Picard F; Mogi S; Bize A; Sambin L; Muller O; Varenne O; De Bruyne B; Ghaleh B
    Catheter Cardiovasc Interv; 2022 Feb; 99(3):836-843. PubMed ID: 34080778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adequacy of intracoronary versus intravenous adenosine-induced maximal coronary hyperemia for fractional flow reserve measurements.
    Jeremias A; Whitbourn RJ; Filardo SD; Fitzgerald PJ; Cohen DJ; Tuzcu EM; Anderson WD; Abizaid AA; Mintz GS; Yeung AC; Kern MJ; Yock PG
    Am Heart J; 2000 Oct; 140(4):651-7. PubMed ID: 11011341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automation of intracoronary continuous thermodilution for absolute coronary flow and microvascular resistance measurements.
    Candreva A; Gallinoro E; Fernandez Peregrina E; Sonck J; Keulards DCJ; Van't Veer M; Mizukami T; Pijls NHJ; Collet C; De Bruyne B
    Catheter Cardiovasc Interv; 2022 Aug; 100(2):199-206. PubMed ID: 35723684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct volumetric blood flow measurement in coronary arteries by thermodilution.
    Aarnoudse W; Van't Veer M; Pijls NH; Ter Woorst J; Vercauteren S; Tonino P; Geven M; Rutten M; van Hagen E; de Bruyne B; van de Vosse F
    J Am Coll Cardiol; 2007 Dec; 50(24):2294-304. PubMed ID: 18068038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous thermodilution to assess absolute flow and microvascular resistance: validation in humans using [15O]H2O positron emission tomography.
    Everaars H; de Waard GA; Schumacher SP; Zimmermann FM; Bom MJ; van de Ven PM; Raijmakers PG; Lammertsma AA; Götte MJ; van Rossum AC; Kurata A; Marques KMJ; Pijls NHJ; van Royen N; Knaapen P
    Eur Heart J; 2019 Jul; 40(28):2350-2359. PubMed ID: 31327012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased basal coronary blood flow as a cause of reduced coronary flow reserve in diabetic patients.
    Picchi A; Limbruno U; Focardi M; Cortese B; Micheli A; Boschi L; Severi S; De Caterina R
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2279-84. PubMed ID: 21984541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Elective Percutaneous Coronary Intervention on Hyperemic Absolute Coronary Blood Flow Volume and Microvascular Resistance.
    Kanaji Y; Murai T; Yonetsu T; Usui E; Araki M; Matsuda J; Hoshino M; Yamaguchi M; Niida T; Hada M; Ichijyo S; Hamaya R; Kanno Y; Isobe M; Kakuta T
    Circ Cardiovasc Interv; 2017 Oct; 10(10):. PubMed ID: 29038224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Value of echocardiography for evaluation of the flow-dependent epicardial coronary vasodilation in vivo.
    Li T; Deng Y; Wang L; Yang H; Bi X; Zhang Q; Liu J; Chang Q; Li C
    J Huazhong Univ Sci Technolog Med Sci; 2005; 25(4):464-7. PubMed ID: 16196305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of adenosine on human coronary arterial circulation.
    Wilson RF; Wyche K; Christensen BV; Zimmer S; Laxson DD
    Circulation; 1990 Nov; 82(5):1595-606. PubMed ID: 2225364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous infusion thermodilution for assessment of coronary flow: theoretical background and in vitro validation.
    van't Veer M; Geven MC; Rutten MC; van der Horst A; Aarnoudse WH; Pijls NH; van de Vosse FN
    Med Eng Phys; 2009 Jul; 31(6):688-94. PubMed ID: 19237308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the intracoronary continuous infusion method using a microcatheter and the intravenous continuous adenosine infusion method for inducing maximal hyperemia for fractional flow reserve measurement.
    Yoon MH; Tahk SJ; Yang HM; Park JS; Zheng M; Lim HS; Choi BJ; Choi SY; Choi UJ; Hwang JW; Kang SJ; Hwang GS; Shin JH
    Am Heart J; 2009 Jun; 157(6):1050-6. PubMed ID: 19464416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute Coronary Blood Flow Measured by Continuous Thermodilution in Patients With Ischemia and Nonobstructive Disease.
    Konst RE; Elias-Smale SE; Pellegrini D; Hartzema-Meijer M; van Uden BJC; Jansen TPJ; Vart P; Gehlmann H; Maas AHEM; van Royen N; Damman P
    J Am Coll Cardiol; 2021 Feb; 77(6):728-741. PubMed ID: 33573743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coronary thermodilution to assess flow reserve: validation in humans.
    Pijls NH; De Bruyne B; Smith L; Aarnoudse W; Barbato E; Bartunek J; Bech GJ; Van De Vosse F
    Circulation; 2002 May; 105(21):2482-6. PubMed ID: 12034653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tachycardia, contractility and volume loading alter conventional indexes of coronary flow reserve, but not the instantaneous hyperemic flow versus pressure slope index.
    Cleary RM; Ayon D; Moore NB; DeBoe SF; Mancini GB
    J Am Coll Cardiol; 1992 Nov; 20(5):1261-9. PubMed ID: 1401630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.