BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32690023)

  • 1. GenAPI: a tool for gene absence-presence identification in fragmented bacterial genome sequences.
    Gabrielaite M; Marvig RL
    BMC Bioinformatics; 2020 Jul; 21(1):320. PubMed ID: 32690023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph analysis of fragmented long-read bacterial genome assemblies.
    Marijon P; Chikhi R; Varré JS
    Bioinformatics; 2019 Nov; 35(21):4239-4246. PubMed ID: 30918948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing.
    Goldstein S; Beka L; Graf J; Klassen JL
    BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CSAR: a contig scaffolding tool using algebraic rearrangements.
    Chen KT; Liu CL; Huang SH; Shen HT; Shieh YK; Chiu HT; Lu CL
    Bioinformatics; 2018 Jan; 34(1):109-111. PubMed ID: 28968788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BESST--efficient scaffolding of large fragmented assemblies.
    Sahlin K; Vezzi F; Nystedt B; Lundeberg J; Arvestad L
    BMC Bioinformatics; 2014 Aug; 15(1):281. PubMed ID: 25128196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene calling and bacterial genome annotation with BG7.
    Tobes R; Pareja-Tobes P; Manrique M; Pareja-Tobes E; Kovach E; Alekhin A; Pareja E
    Methods Mol Biol; 2015; 1231():177-89. PubMed ID: 25343866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GFinisher: a new strategy to refine and finish bacterial genome assemblies.
    Guizelini D; Raittz RT; Cruz LM; Souza EM; Steffens MB; Pedrosa FO
    Sci Rep; 2016 Oct; 6():34963. PubMed ID: 27721396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads.
    Al-Okaily AA
    BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trycycler: consensus long-read assemblies for bacterial genomes.
    Wick RR; Judd LM; Cerdeira LT; Hawkey J; Méric G; Vezina B; Wyres KL; Holt KE
    Genome Biol; 2021 Sep; 22(1):266. PubMed ID: 34521459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Sequencing of Steroid-Producing Bacteria with Illumina Technology.
    Shtratnikova VY; Schelkunov MI; Donova MV
    Methods Mol Biol; 2017; 1645():29-44. PubMed ID: 28710619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using KBase to Assemble and Annotate Prokaryotic Genomes.
    Allen B; Drake M; Harris N; Sullivan T
    Curr Protoc Microbiol; 2017 Aug; 46():1E.13.1-1E.13.18. PubMed ID: 28800158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scanPAV: a pipeline for extracting presence-absence variations in genome pairs.
    Giordano F; Stammnitz MR; Murchison EP; Ning Z
    Bioinformatics; 2018 Sep; 34(17):3022-3024. PubMed ID: 29608694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGAAT: A Reference-based Genome Assembly and Annotation Tool for New Genomes and Upgrade of Known Genomes.
    Liu W; Wu S; Lin Q; Gao S; Ding F; Zhang X; Aljohi HA; Yu J; Hu S
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):373-381. PubMed ID: 30583062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. misFinder: identify mis-assemblies in an unbiased manner using reference and paired-end reads.
    Zhu X; Leung HC; Wang R; Chin FY; Yiu SM; Quan G; Li Y; Zhang R; Jiang Q; Liu B; Dong Y; Zhou G; Wang Y
    BMC Bioinformatics; 2015 Nov; 16():386. PubMed ID: 26573684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABenchToB: a genome assembly benchmark tuned on bacteria and benchtop sequencers.
    Jünemann S; Prior K; Albersmeier A; Albaum S; Kalinowski J; Goesmann A; Stoye J; Harmsen D
    PLoS One; 2014; 9(9):e107014. PubMed ID: 25198770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From sequence mapping to genome assemblies.
    Otto TD
    Methods Mol Biol; 2015; 1201():19-50. PubMed ID: 25388106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome.
    Faino L; Seidl MF; Datema E; van den Berg GC; Janssen A; Wittenberg AH; Thomma BP
    mBio; 2015 Aug; 6(4):. PubMed ID: 26286689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.