These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Virulence of Entomopathogenic Fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the Microbial Control of Spodoptera exigua. Han JH; Jin BR; Kim JJ; Lee SY Mycobiology; 2014 Dec; 42(4):385-90. PubMed ID: 25606011 [TBL] [Abstract][Full Text] [Related]
23. Identification of entomopathogenic fungus Metarhizium rileyi infested in fall armyworm in the cornfield of Korea, and evaluation of its virulence. Acharya R; Lee JY; Hwang HS; Kim MK; Lee SY; Jung HY; Park I; Lee KY Arch Insect Biochem Physiol; 2022 Dec; 111(4):e21965. PubMed ID: 36053552 [TBL] [Abstract][Full Text] [Related]
24. Microsclerotial Granular Formulation of the Entomopathogenic Fungus Metarhizium brunneum and Its Combinations With Hydrogel and Imidacloprid Against the Annual Bluegrass Weevil (Coleoptera: Curculionidae). Koppenhӧfer AM; Wu S; Kostromytska OS J Econ Entomol; 2020 Jun; 113(3):1118-1128. PubMed ID: 32221577 [TBL] [Abstract][Full Text] [Related]
25. Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. Mascarin GM; Kobori NN; de Jesus Vital RC; Jackson MA; Quintela ED World J Microbiol Biotechnol; 2014 May; 30(5):1583-90. PubMed ID: 24343780 [TBL] [Abstract][Full Text] [Related]
26. Exploring virulence of new and less studied species of Metarhizium spp. from Brazil for two-spotted spider mite control. Castro T; Eilenberg J; Delalibera I Exp Appl Acarol; 2018 Feb; 74(2):139-146. PubMed ID: 29411186 [TBL] [Abstract][Full Text] [Related]
27. Optimization of granular formulations of Metarhizium humberi microsclerotia with humectants. Catão AML; Rodrigues J; Marreto RN; Mascarin GM; Fernandes ÉKK; Humber RA; Luz C J Basic Microbiol; 2021 Sep; 61(9):808-813. PubMed ID: 34309880 [TBL] [Abstract][Full Text] [Related]
28. Intraguild interactions and behavior of Spodoptera frugiperda and Helicoverpa spp. on maize. Bentivenha JP; Montezano DG; Hunt TE; Baldin EL; Peterson JA; Victor VS; Pannuti LE; Vélez AM; Paula-Moraes SV Pest Manag Sci; 2017 Nov; 73(11):2244-2251. PubMed ID: 28444855 [TBL] [Abstract][Full Text] [Related]
29. Pathogenicity of fungal isolates (Ascomycota: Hypocreales) against Peregrinus maidis, Delphacodes kuscheli (Hemiptera: Delphacidae), and Dalbulus maidis (Hemiptera: Cicadellidae), vectors of corn diseases. Toledo AV; de Remes Lenicov AM; López Lastra CC Mycopathologia; 2007 Apr; 163(4):225-32. PubMed ID: 17407003 [TBL] [Abstract][Full Text] [Related]
30. Pathogenicity of microsclerotia from Metarhizium robertsii against Aedes aegypti larvae and antimicrobial peptides expression by mosquitoes during fungal-host interaction. Paixão FRS; Falvo ML; Huarte-Bonnet C; Santana M; García JJ; Fernandes ÉKK; Pedrini N Acta Trop; 2024 Jan; 249():107061. PubMed ID: 37918505 [TBL] [Abstract][Full Text] [Related]
31. Blastospores from Gotti IA; Moreira CC; Delalibera I; De Fine Licht HH Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375096 [TBL] [Abstract][Full Text] [Related]
32. Silicon-based induced resistance in maize against fall armyworm [Spodoptera frugiperda (Lepidoptera: Noctuidae)]. Haq IU; Khurshid A; Inayat R; Zhang K; Liu C; Ali S; Zuan ATK; Al-Hashimi A; Abbasi AM PLoS One; 2021; 16(11):e0259749. PubMed ID: 34752476 [TBL] [Abstract][Full Text] [Related]
33. Intercropped Bt and non-Bt corn with ruzigrass (Urochloa ruziziensis) as a tool to resistance management of Spodoptera frugiperda (JE Smith, 1797) (Lepidoptera: Noctuidae). Jacques FL; Degrande PE; Gauer E; Malaquias JB; Scoton AMN Pest Manag Sci; 2021 Jul; 77(7):3372-3381. PubMed ID: 33786976 [TBL] [Abstract][Full Text] [Related]
34. Virulence of Beauveria sp. and Metarhizium sp. fungi towards fall armyworm (Spodoptera frugiperda). Apirajkamol NB; Hogarty TM; Mainali B; Taylor PW; Walsh TK; Tay WT Arch Microbiol; 2023 Sep; 205(10):328. PubMed ID: 37676308 [TBL] [Abstract][Full Text] [Related]
35. Modified Adamek's medium renders high yields of Metarhizium robertsii blastospores that are desiccation tolerant and infective to cattle-tick larvae. Iwanicki NS; Ferreira BO; Mascarin GM; Júnior ÍD Fungal Biol; 2018 Sep; 122(9):883-890. PubMed ID: 30115322 [TBL] [Abstract][Full Text] [Related]
36. Induction of resistance of corn plants to Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) by application of silicon and gibberellic acid. Alvarenga R; Moraes JC; Auad AM; Coelho M; Nascimento AM Bull Entomol Res; 2017 Aug; 107(4):527-533. PubMed ID: 28112063 [TBL] [Abstract][Full Text] [Related]
37. Natural enemies recovered from Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae) larvae infesting the cartridge, ear and stem of corn plants under conventional and organic farming systems in Brazil. Silva RBD; Cruz I; Figueiredo MLC; Redoan ACM; Shimbori EM; Tavares WS; Dias AMPM An Acad Bras Cienc; 2023; 95(4):e20200042. PubMed ID: 38088700 [TBL] [Abstract][Full Text] [Related]
38. Does Singular and Stacked Corn Affect Choice Behavior for Oviposition and Feed in Spodoptera frugiperda (Lepidoptera: Noctuidae)? Nascimento PT; Von Pinho RG; Fadini MAM; Souza CSF; Valicente FH Neotrop Entomol; 2020 Apr; 49(2):302-310. PubMed ID: 31970681 [TBL] [Abstract][Full Text] [Related]
39. Biocontrol potential of methyl chavicol for managing Spodoptera frugiperda (Lepidoptera: Noctuidae), an important corn pest. de Menezes CWG; Carvalho GA; Alves DS; de Carvalho AA; Aazza S; de Oliveira Ramos V; Pinto JEBP; Bertolucci SKV Environ Sci Pollut Res Int; 2020 Feb; 27(5):5030-5041. PubMed ID: 31848958 [TBL] [Abstract][Full Text] [Related]
40. Entomopathogenic fungi based microbial insecticides and their physiological and biochemical effects on Vivekanandhan P; Swathy K; Lucy A; Sarayut P; Patcharin K Front Cell Infect Microbiol; 2023; 13():1254475. PubMed ID: 38149005 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]