These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 32690253)
1. Differential susceptibility of blastospores and aerial conidia of entomopathogenic fungi to heat and UV-B stresses. Bernardo CDC; Pereira-Junior RA; Luz C; Mascarin GM; Kamp Fernandes ÉK Fungal Biol; 2020 Aug; 124(8):714-722. PubMed ID: 32690253 [TBL] [Abstract][Full Text] [Related]
2. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Bernardo CC; Barreto LP; E Silva CSR; Luz C; Arruda W; Fernandes ÉKK Ticks Tick Borne Dis; 2018 Jul; 9(5):1334-1342. PubMed ID: 29914750 [TBL] [Abstract][Full Text] [Related]
4. Conidial mass production of entomopathogenic fungi and tolerance of their mass-produced conidia to UV-B radiation and heat. Rangel DEN; Acheampong MA; Bignayan HG; Golez HG; Roberts DW Fungal Biol; 2023 Dec; 127(12):1524-1533. PubMed ID: 38097326 [TBL] [Abstract][Full Text] [Related]
5. Possible source of the high UV-B and heat tolerance of Metarhizium acridum (isolate ARSEF 324). Rangel DEN; Roberts DW J Invertebr Pathol; 2018 Sep; 157():32-35. PubMed ID: 30017952 [TBL] [Abstract][Full Text] [Related]
6. Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. Fernandes EK; Rangel DE; Moraes AM; Bittencourt VR; Roberts DW J Invertebr Pathol; 2008 May; 98(1):69-78. PubMed ID: 18096184 [TBL] [Abstract][Full Text] [Related]
7. Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance. Rangel DE; Fernandes ÉK; Anderson AJ; Roberts DW Fungal Biol; 2012 Mar; 116(3):438-42. PubMed ID: 22385625 [TBL] [Abstract][Full Text] [Related]
8. Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. Rangel DE; Butler MJ; Torabinejad J; Anderson AJ; Braga GU; Day AW; Roberts DW J Invertebr Pathol; 2006 Nov; 93(3):170-82. PubMed ID: 16934287 [TBL] [Abstract][Full Text] [Related]
9. Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses. Dias LP; Souza RKF; Pupin B; Rangel DEN Fungal Biol; 2021 Nov; 125(11):891-904. PubMed ID: 34649676 [TBL] [Abstract][Full Text] [Related]
10. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Rangel DE; Anderson AJ; Roberts DW Mycol Res; 2008 Nov; 112(Pt 11):1362-72. PubMed ID: 18938068 [TBL] [Abstract][Full Text] [Related]
11. Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. de Oliveira Barbosa Bitencourt R; Reis Dos Santos Mallet J; Mesquita E; Silva Gôlo P; Fiorotti J; Rita Elias Pinheiro Bittencourt V; Guedes Pontes E; da Costa Angelo I Acta Trop; 2021 Jan; 213():105732. PubMed ID: 33188750 [TBL] [Abstract][Full Text] [Related]
12. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes. Pereira-Junior RA; Huarte-Bonnet C; Paixão FRS; Roberts DW; Luz C; Pedrini N; Fernandes ÉKK J Appl Microbiol; 2018 Jul; 125(1):159-171. PubMed ID: 29473986 [TBL] [Abstract][Full Text] [Related]
13. Complex nitrogen sources from agro-industrial byproducts: impact on production, multi-stress tolerance, virulence, and quality of Lima VH; Matugawa AT; Mascarin GM; Fernandes ÉKK Microbiol Spectr; 2024 Jun; 12(6):e0404023. PubMed ID: 38700331 [TBL] [Abstract][Full Text] [Related]
14. Tolerance to UV-B radiation of the entomopathogenic fungus Metarhizium rileyi. Licona-Juárez KC; Andrade EP; Medina HR; Oliveira JNS; Sosa-Gómez DR; Rangel DEN Fungal Biol; 2023; 127(7-8):1250-1258. PubMed ID: 37495315 [TBL] [Abstract][Full Text] [Related]
15. Mass Production of Entomopathogenic Fungi, Metarhizium robertsii and Metarhizium pinghaense, for Commercial Application Against Insect Pests. Mathulwe LL; Malan AP; Stokwe NF J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435892 [TBL] [Abstract][Full Text] [Related]
16. Isolation, morphological characterization, and screening virulence of Geremew D; Shiberu T; Leta A F1000Res; 2023; 12():827. PubMed ID: 38434644 [TBL] [Abstract][Full Text] [Related]
17. UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African citrus orchards. Acheampong MA; Hill MP; Moore SD; Coombes CA Fungal Biol; 2020 May; 124(5):304-310. PubMed ID: 32389292 [TBL] [Abstract][Full Text] [Related]
18. Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat. Santos MP; Dias LP; Ferreira PC; Pasin LA; Rangel DE J Invertebr Pathol; 2011 Nov; 108(3):209-13. PubMed ID: 21925183 [TBL] [Abstract][Full Text] [Related]
19. Differential Pathogenicity of Metarhizium Blastospores and Conidia Against Larvae of Three Mosquito Species. Alkhaibari AM; Carolino AT; Bull JC; Samuels RI; Butt TM J Med Entomol; 2017 May; 54(3):696-704. PubMed ID: 28399202 [TBL] [Abstract][Full Text] [Related]
20. UV-B radiation reduces in vitro germination of Metarhizium anisopliae s.l. but does not affect virulence in fungus-treated Aedes aegypti adults and development on dead mosquitoes. Falvo ML; Pereira-Junior RA; Rodrigues J; López Lastra CC; García JJ; Fernandes ÉK; Luz C J Appl Microbiol; 2016 Dec; 121(6):1710-1717. PubMed ID: 27685030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]