These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32690695)

  • 1. High-pressure elastic properties of dolomite melt supporting carbonate-induced melting in deep upper mantle.
    Xu M; Jing Z; Bajgain SK; Mookherjee M; Van Orman JA; Yu T; Wang Y
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18285-18291. PubMed ID: 32690695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling.
    Rohrbach A; Schmidt MW
    Nature; 2011 Apr; 472(7342):209-12. PubMed ID: 21441908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-dioxide-rich silicate melt in the Earth's upper mantle.
    Dasgupta R; Mallik A; Tsuno K; Withers AC; Hirth G; Hirschmann MM
    Nature; 2013 Jan; 493(7431):211-5. PubMed ID: 23302861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow viscosity of carbonate melts at high pressures.
    Kono Y; Kenney-Benson C; Hummer D; Ohfuji H; Park C; Shen G; Wang Y; Kavner A; Manning CE
    Nat Commun; 2014 Oct; 5():5091. PubMed ID: 25311627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary carbonatite melt from deeply subducted oceanic crust.
    Walter MJ; Bulanova GP; Armstrong LS; Keshav S; Blundy JD; Gudfinnsson G; Lord OT; Lennie AR; Clark SM; Smith CB; Gobbo L
    Nature; 2008 Jul; 454(7204):622-5. PubMed ID: 18668105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evidence supporting a global melt layer at the base of the Earth's upper mantle.
    Freitas D; Manthilake G; Schiavi F; Chantel J; Bolfan-Casanova N; Bouhifd MA; Andrault D
    Nat Commun; 2017 Dec; 8(1):2186. PubMed ID: 29259159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-bearing silicate melt at deep mantle conditions.
    Ghosh DB; Bajgain SK; Mookherjee M; Karki BB
    Sci Rep; 2017 Apr; 7(1):848. PubMed ID: 28405005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slab melting as a barrier to deep carbon subduction.
    Thomson AR; Walter MJ; Kohn SC; Brooker RA
    Nature; 2016 Jan; 529(7584):76-9. PubMed ID: 26738593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle.
    Merlini M; Crichton WA; Hanfland M; Gemmi M; Müller H; Kupenko I; Dubrovinsky L
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13509-14. PubMed ID: 22869705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin crossover and iron-rich silicate melt in the Earth's deep mantle.
    Nomura R; Ozawa H; Tateno S; Hirose K; Hernlund J; Muto S; Ishii H; Hiraoka N
    Nature; 2011 May; 473(7346):199-202. PubMed ID: 21516105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of local variations in conditions on carbon storage and release in the continental mantle.
    Foley SF; Chen C; Jacob DE
    Natl Sci Rev; 2024 Jun; 11(6):nwae098. PubMed ID: 38933600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Configurational entropy of basaltic melts in Earth's mantle.
    Lee SK; Mosenfelder JL; Park SY; Lee AC; Asimow PD
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21938-21944. PubMed ID: 32839310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of ultralow velocity zones through slab-derived metallic melt.
    Liu J; Li J; Hrubiak R; Smith JS
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5547-51. PubMed ID: 27143719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical conductivity of melts: implications for conductivity anomalies in the Earth's mantle.
    Zhang BH; Guo X; Yoshino T; Xia QK
    Natl Sci Rev; 2021 Nov; 8(11):nwab064. PubMed ID: 34876992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxidation state of the mantle and the extraction of carbon from Earth's interior.
    Stagno V; Ojwang DO; McCammon CA; Frost DJ
    Nature; 2013 Jan; 493(7430):84-8. PubMed ID: 23282365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle.
    Matsukage KN; Jing Z; Karato S
    Nature; 2005 Nov; 438(7067):488-91. PubMed ID: 16306990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Earth's interior. Dehydration melting at the top of the lower mantle.
    Schmandt B; Jacobsen SD; Becker TW; Liu Z; Dueker KG
    Science; 2014 Jun; 344(6189):1265-8. PubMed ID: 24926016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of hydrous melt at the base of the Earth's upper mantle.
    Sakamaki T; Suzuki A; Ohtani E
    Nature; 2006 Jan; 439(7073):192-4. PubMed ID: 16407950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of δ-(Al,Fe)OOH on seismic heterogeneities in Earth's lower mantle.
    Ohira I; Jackson JM; Sturhahn W; Finkelstein GJ; Kawazoe T; Toellner TS; Suzuki A; Ohtani E
    Sci Rep; 2021 Jun; 11(1):12036. PubMed ID: 34103572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation.
    Giuliani A; Pearson DG; Soltys A; Dalton H; Phillips D; Foley SF; Lim E; Goemann K; Griffin WL; Mitchell RH
    Sci Adv; 2020 Apr; 6(17):eaaz0424. PubMed ID: 32494633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.