BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 32690958)

  • 1. A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes.
    Fu L; Li Z; Liu K; Tian C; He J; He J; He F; Xu P; Yang J
    Nat Protoc; 2020 Sep; 15(9):2891-2919. PubMed ID: 32690958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome.
    Desai HS; Yan T; Backus KM
    Curr Protoc; 2022 Jul; 2(7):e492. PubMed ID: 35895291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotopically-Labeled Iodoacetamide-Alkyne Probes for Quantitative Cysteine-Reactivity Profiling.
    Abo M; Li C; Weerapana E
    Mol Pharm; 2018 Mar; 15(3):743-749. PubMed ID: 29172527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global, in situ, site-specific analysis of protein S-sulfenylation.
    Yang J; Gupta V; Tallman KA; Porter NA; Carroll KS; Liebler DC
    Nat Protoc; 2015 Jul; 10(7):1022-37. PubMed ID: 26086405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Proteomic Mapping of Cysteine Persulfidation.
    Fu L; Liu K; He J; Tian C; Yu X; Yang J
    Antioxid Redox Signal; 2020 Nov; 33(15):1061-1076. PubMed ID: 31411056
    [No Abstract]   [Full Text] [Related]  

  • 7. SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State-Dependent Redox-Sensitive Cysteines.
    Desai HS; Yan T; Yu F; Sun AW; Villanueva M; Nesvizhskii AI; Backus KM
    Mol Cell Proteomics; 2022 Apr; 21(4):100218. PubMed ID: 35219905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications.
    Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ
    Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Chemoproteomic Profiling with Data-Independent Acquisition-Based Mass Spectrometry.
    Yang F; Jia G; Guo J; Liu Y; Wang C
    J Am Chem Soc; 2022 Jan; 144(2):901-911. PubMed ID: 34986311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*.
    Yan T; Desai HS; Boatner LM; Yen SL; Cao J; Palafox MF; Jami-Alahmadi Y; Backus KM
    Chembiochem; 2021 May; 22(10):1841-1851. PubMed ID: 33442901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic and Quantitative Assessment of Hydrogen Peroxide Reactivity With Cysteines Across Human Proteomes.
    Fu L; Liu K; Sun M; Tian C; Sun R; Morales Betanzos C; Tallman KA; Porter NA; Yang Y; Guo D; Liebler DC; Yang J
    Mol Cell Proteomics; 2017 Oct; 16(10):1815-1828. PubMed ID: 28827280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J; Carroll KS; Liebler DC
    Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection.
    Chung HS; Murray CI; Venkatraman V; Crowgey EL; Rainer PP; Cole RN; Bomgarden RD; Rogers JC; Balkan W; Hare JM; Kass DA; Van Eyk JE
    Circ Res; 2015 Oct; 117(10):846-57. PubMed ID: 26338901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPEAR: A proteomics approach for simultaneous protein expression and redox analysis.
    Doron S; Lampl N; Savidor A; Katina C; Gabashvili A; Levin Y; Rosenwasser S
    Free Radic Biol Med; 2021 Nov; 176():366-377. PubMed ID: 34619326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Chemically-Cleavable Linkers for Quantitative Mapping of Small Molecule-Cysteinome Reactivity.
    Rabalski AJ; Bogdan AR; Baranczak A
    ACS Chem Biol; 2019 Sep; 14(9):1940-1950. PubMed ID: 31430117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activated Thiol Sepharose-based proteomic approach to quantify reversible protein oxidation.
    Xu Y; Andrade J; Ueberheide B; Neel BG
    FASEB J; 2019 Nov; 33(11):12336-12347. PubMed ID: 31451050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maleimide-Based Chemical Proteomics for Quantitative Analysis of Cysteine Reactivity.
    McConnell EW; Smythers AL; Hicks LM
    J Am Soc Mass Spectrom; 2020 Jul; ():. PubMed ID: 32573231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific quantitative cysteine profiling with data-independent acquisition-based mass spectrometry.
    Yang F; Wang C
    Methods Enzymol; 2023; 679():295-322. PubMed ID: 36682866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.