These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
671 related articles for article (PubMed ID: 32690971)
1. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971 [TBL] [Abstract][Full Text] [Related]
2. Glycosylase base editors enable C-to-A and C-to-G base changes. Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674 [TBL] [Abstract][Full Text] [Related]
4. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Sakata RC; Ishiguro S; Mori H; Tanaka M; Tatsuno K; Ueda H; Yamamoto S; Seki M; Masuyama N; Nishida K; Nishimasu H; Arakawa K; Kondo A; Nureki O; Tomita M; Aburatani H; Yachie N Nat Biotechnol; 2020 Jul; 38(7):865-869. PubMed ID: 32483365 [TBL] [Abstract][Full Text] [Related]
5. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase. Tong H; Wang H; Wang X; Liu N; Li G; Wu D; Li Y; Jin M; Li H; Wei Y; Li T; Yuan Y; Shi L; Yao X; Zhou Y; Yang H Nat Commun; 2024 Jun; 15(1):4897. PubMed ID: 38851742 [TBL] [Abstract][Full Text] [Related]
6. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Chen L; Zhu B; Ru G; Meng H; Yan Y; Hong M; Zhang D; Luan C; Zhang S; Wu H; Gao H; Bai S; Li C; Ding R; Xue N; Lei Z; Chen Y; Guan Y; Siwko S; Cheng Y; Song G; Wang L; Yi C; Liu M; Li D Nat Biotechnol; 2023 May; 41(5):663-672. PubMed ID: 36357717 [TBL] [Abstract][Full Text] [Related]
7. Off-Target Editing by CRISPR-Guided DNA Base Editors. Park S; Beal PA Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621 [TBL] [Abstract][Full Text] [Related]
8. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Grünewald J; Zhou R; Lareau CA; Garcia SP; Iyer S; Miller BR; Langner LM; Hsu JY; Aryee MJ; Joung JK Nat Biotechnol; 2020 Jul; 38(7):861-864. PubMed ID: 32483364 [TBL] [Abstract][Full Text] [Related]
9. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos. Chen L; Hong M; Luan C; Gao H; Ru G; Guo X; Zhang D; Zhang S; Li C; Wu J; Randolph PB; Sousa AA; Qu C; Zhu Y; Guan Y; Wang L; Liu M; Feng B; Song G; Liu DR; Li D Nat Biotechnol; 2024 Apr; 42(4):638-650. PubMed ID: 37322276 [TBL] [Abstract][Full Text] [Related]
10. The "new favorite" of gene editing technology-single base editors. Wei Y; Zhang XH; Li DL Yi Chuan; 2017 Dec; 39(12):1115-1121. PubMed ID: 29258982 [TBL] [Abstract][Full Text] [Related]
11. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Zuo E; Sun Y; Yuan T; He B; Zhou C; Ying W; Liu J; Wei W; Zeng R; Li Y; Yang H Nat Methods; 2020 Jun; 17(6):600-604. PubMed ID: 32424272 [TBL] [Abstract][Full Text] [Related]
12. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844 [TBL] [Abstract][Full Text] [Related]
14. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools. Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335 [TBL] [Abstract][Full Text] [Related]
15. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells. Ye L; Zhao D; Li J; Wang Y; Li B; Yang Y; Hou X; Wang H; Wei Z; Liu X; Li Y; Li S; Liu Y; Zhang X; Bi C Nat Biotechnol; 2024 Oct; 42(10):1538-1547. PubMed ID: 38168994 [TBL] [Abstract][Full Text] [Related]
16. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Grünewald J; Zhou R; Iyer S; Lareau CA; Garcia SP; Aryee MJ; Joung JK Nat Biotechnol; 2019 Sep; 37(9):1041-1048. PubMed ID: 31477922 [TBL] [Abstract][Full Text] [Related]
17. Base editing with a Cpf1-cytidine deaminase fusion. Li X; Wang Y; Liu Y; Yang B; Wang X; Wei J; Lu Z; Zhang Y; Wu J; Huang X; Yang L; Chen J Nat Biotechnol; 2018 Apr; 36(4):324-327. PubMed ID: 29553573 [TBL] [Abstract][Full Text] [Related]
19. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Bae SJ; Park BG; Kim BG; Hahn JS Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874 [TBL] [Abstract][Full Text] [Related]
20. Highly efficient RNA-guided base editing in rabbit. Liu Z; Chen M; Chen S; Deng J; Song Y; Lai L; Li Z Nat Commun; 2018 Jul; 9(1):2717. PubMed ID: 30006570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]