These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 32691302)
1. A deep learning method for real-time intraoperative US image segmentation in prostate brachytherapy. Girum KB; Lalande A; Hussain R; Créhange G Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1467-1476. PubMed ID: 32691302 [TBL] [Abstract][Full Text] [Related]
2. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768 [TBL] [Abstract][Full Text] [Related]
3. Deep learning-based ultrasound auto-segmentation of the prostate with brachytherapy implanted needles. Hampole P; Harding T; Gillies D; Orlando N; Edirisinghe C; Mendez LC; D'Souza D; Velker V; Correa R; Helou J; Xing S; Fenster A; Hoover DA Med Phys; 2024 Apr; 51(4):2665-2677. PubMed ID: 37888789 [TBL] [Abstract][Full Text] [Related]
4. Fast interactive medical image segmentation with weakly supervised deep learning method. Girum KB; Créhange G; Hussain R; Lalande A Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1437-1444. PubMed ID: 32653985 [TBL] [Abstract][Full Text] [Related]
5. Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images. Karimi D; Zeng Q; Mathur P; Avinash A; Mahdavi S; Spadinger I; Abolmaesumi P; Salcudean SE Med Image Anal; 2019 Oct; 57():186-196. PubMed ID: 31325722 [TBL] [Abstract][Full Text] [Related]
6. Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy. Zeng Q; Fu Y; Tian Z; Lei Y; Zhang Y; Wang T; Mao H; Liu T; Curran WJ; Jani AB; Patel P; Yang X Phys Med Biol; 2020 Jun; 65(13):135002. PubMed ID: 32330922 [TBL] [Abstract][Full Text] [Related]
7. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy. Yang X; Rossi P; Ogunleye T; Marcus DM; Jani AB; Mao H; Curran WJ; Liu T Med Phys; 2014 Nov; 41(11):111915. PubMed ID: 25370648 [TBL] [Abstract][Full Text] [Related]
8. Multi-needle Localization with Attention U-Net in US-guided HDR Prostate Brachytherapy. Zhang Y; Lei Y; Qiu RLJ; Wang T; Wang H; Jani AB; Curran WJ; Patel P; Liu T; Yang X Med Phys; 2020 Jul; 47(7):2735-2745. PubMed ID: 32155666 [TBL] [Abstract][Full Text] [Related]
9. MR to ultrasound image registration with segmentation-based learning for HDR prostate brachytherapy. Chen Y; Xing L; Yu L; Liu W; Pooya Fahimian B; Niedermayr T; Bagshaw HP; Buyyounouski M; Han B Med Phys; 2021 Jun; 48(6):3074-3083. PubMed ID: 33905566 [TBL] [Abstract][Full Text] [Related]
10. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound. Orlando N; Gyacskov I; Gillies DJ; Guo F; Romagnoli C; D'Souza D; Cool DW; Hoover DA; Fenster A Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35240585 [TBL] [Abstract][Full Text] [Related]
11. The challenges facing deep learning-based catheter localization for ultrasound guided high-dose-rate prostate brachytherapy. Liu D; Tupor S; Singh J; Chernoff T; Leong N; Sadikov E; Amjad A; Zilles S Med Phys; 2022 Apr; 49(4):2442-2451. PubMed ID: 35118676 [TBL] [Abstract][Full Text] [Related]
12. Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net. Lei Y; Tian S; He X; Wang T; Wang B; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X Med Phys; 2019 Jul; 46(7):3194-3206. PubMed ID: 31074513 [TBL] [Abstract][Full Text] [Related]
13. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy. Qiu W; Yuchi M; Ding M; Tessier D; Fenster A Med Phys; 2013 Apr; 40(4):042902. PubMed ID: 23556924 [TBL] [Abstract][Full Text] [Related]
15. Rotationally resliced 3D prostate TRUS segmentation using convex optimization with shape priors. Qiu W; Yuan J; Ukwatta E; Fenster A Med Phys; 2015 Feb; 42(2):877-91. PubMed ID: 25652500 [TBL] [Abstract][Full Text] [Related]
16. Automatic detection of brachytherapy seeds in 3D ultrasound images using a convolutional neural network. Golshan M; Karimi D; Mahdavi S; Lobo J; Peacock M; Salcudean SE; Spadinger I Phys Med Biol; 2020 Feb; 65(3):035016. PubMed ID: 31860899 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning for Real-time, Automatic, and Scanner-adapted Prostate (Zone) Segmentation of Transrectal Ultrasound, for Example, Magnetic Resonance Imaging-transrectal Ultrasound Fusion Prostate Biopsy. van Sloun RJG; Wildeboer RR; Mannaerts CK; Postema AW; Gayet M; Beerlage HP; Salomon G; Wijkstra H; Mischi M Eur Urol Focus; 2021 Jan; 7(1):78-85. PubMed ID: 31028016 [TBL] [Abstract][Full Text] [Related]
19. Electromagnetic tracking for catheter reconstruction in ultrasound-guided high-dose-rate brachytherapy of the prostate. Bharat S; Kung C; Dehghan E; Ravi A; Venugopal N; Bonillas A; Stanton D; Kruecker J Brachytherapy; 2014; 13(6):640-50. PubMed ID: 24929641 [TBL] [Abstract][Full Text] [Related]
20. Boundary delineation in transrectal ultrasound images for region of interest of prostate. Peng T; Dong Y; Di G; Zhao J; Li T; Ren G; Zhang L; Cai J Phys Med Biol; 2023 Sep; 68(19):. PubMed ID: 37652058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]