BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32691318)

  • 1. Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass (Sorghum sudanense (Piper) Stapf.).
    Liu X; Shen S; Zhang X; Chen X; Jin R; Li X
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):41639-41646. PubMed ID: 32691318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass (Sorghum sudanense (Piper) Stapf.) in Ni-pyrene contaminated soil.
    Jiao A; Gao B; Gao M; Liu X; Zhang X; Wang C; Fan D; Han Z; Hu Z
    Chemosphere; 2022 May; 294():133654. PubMed ID: 35066084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of PASP/NTA and TS on the phytoremediation of pyrene-nickel contaminated soil by Bidens pilosa L.
    Liu X; Mao Y; Zhang X; Gu P; Niu Y; Chen X
    Chemosphere; 2019 Dec; 237():124502. PubMed ID: 31549640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of tea saponin on phytoremediation of Cd and pyrene in contaminated soils by Lolium multiflorum.
    Liu X; Cao L; Wang Q; Zhang X; Hu X
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):18946-18952. PubMed ID: 28656573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of alkyl polyglucoside, citric acid, and nitrilotriacetic acid on phytoremediation in pyrene-Pb co-contaminated soils.
    Liu X; Cao L; Zhang X; Chen J; Huo Z; Mao Y
    Int J Phytoremediation; 2018 Aug; 20(10):1055-1061. PubMed ID: 30095307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Bacillus subtilis and NTA-APG on pyrene dissipation in phytoremediation of nickel co-contaminated wetlands by Scirpus triqueter.
    Liu X; Hu X; Zhang X; Chen X; Chen J; Yuan X
    Ecotoxicol Environ Saf; 2018 Jun; 154():69-74. PubMed ID: 29454988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils.
    Zhang X; Su C; Liu X; Liu Z; Liang X; Zhang Y; Feng Y
    Chemosphere; 2020 Feb; 241():125027. PubMed ID: 31606002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils.
    Wang Q; Liu X; Zhang X; Hou Y; Hu X; Liang X; Chen X
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5705-11. PubMed ID: 26581690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined forage grass-microbial for remediation of strontium-contaminated soil.
    Huang J; Dai X; Chen X; Ali I; Chen H; Gou J; Zhuo C; Huang M; Zhu B; Tang Y; Liu J; Xu Y; Tang F; Xue J
    J Hazard Mater; 2023 May; 450():131013. PubMed ID: 36863103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Pb and pyrene accumulation in Scirpus triqueter assisted by combined alkyl polyglucoside and nitrilotriacetic acid application.
    Chen T; Liu X; Zhang X; Hu X; Cao L
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19194-19200. PubMed ID: 28664493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils.
    Chen X; Liu X; Zhang X; Cao L; Hu X
    J Hazard Mater; 2017 Mar; 325():319-326. PubMed ID: 27951500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and Phytoremediation Efficiency of Winged Bean in Fluorene- and Pyrene-Contaminated Soil.
    Chouychai W; Swangying T; Somtrakoon K; Lee H
    Bull Environ Contam Toxicol; 2018 Nov; 101(5):631-636. PubMed ID: 30368575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution by influence factors of pyrene removal in chemical enhancers assisted microbial phytoremediation of
    Zheng K; Fan J; Hu X; Zhang X; Liu X; Shen J
    Int J Phytoremediation; 2019; 21(12):1190-1196. PubMed ID: 31119945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils.
    Rostami S; Azhdarpoor A; Rostami M; Samaei MR
    Chemosphere; 2016 Oct; 161():219-223. PubMed ID: 27434251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on removal of pyrene by
    Zhang X; Chen J; Liu X; Zhang Y; Zou Y; Yuan J
    Int J Phytoremediation; 2020; 22(3):313-321. PubMed ID: 31522526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of different levels of leachate on phytoremediation of pyrene-contaminated soil and simultaneous extraction of lead and cadmium.
    Salehi N; Azhdarpoor A; Shirdarreh M
    Chemosphere; 2020 May; 246():125845. PubMed ID: 31918113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co-contaminated soils.
    Chen T; Liu X; Zhang X; Chen X; Tao K; Hu X
    Chemosphere; 2016 Jul; 154():515-520. PubMed ID: 27085066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils.
    Sivaram AK; Logeshwaran P; Lockington R; Naidu R; Megharaj M
    Chemosphere; 2018 Feb; 193():625-634. PubMed ID: 29175394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.