BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32691463)

  • 1. Towards Accurate Predictions of Proton NMR Spectroscopic Parameters in Molecular Solids.
    Dračínský M; Vícha J; Bártová K; Hodgkinson P
    Chemphyschem; 2020 Sep; 21(18):2075-2083. PubMed ID: 32691463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of quantum nuclear delocalisation on NMR parameters from path integral molecular dynamics.
    Dračínský M; Hodgkinson P
    Chemistry; 2014 Feb; 20(8):2201-7. PubMed ID: 24435841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydrogen bond continuum in solid isonicotinic acid.
    Blahut J; Štoček JR; Šála M; Dračínský M
    J Magn Reson; 2022 Dec; 345():107334. PubMed ID: 36410062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined solid-state NMR and quantum chemical calculation study of hydrogen bonding in two forms of α-d-glucose.
    Brouwer DH; Mikolajewski JG
    Solid State Nucl Magn Reson; 2023 Feb; 123():101848. PubMed ID: 36584544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing Discrepancies in Chemical-Shift Predictions of Solid Pyridinium Fumarates.
    Dračínský M
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transfer in guanine-cytosine base pair analogues studied by NMR spectroscopy and PIMD simulations.
    Pohl R; Socha O; Slavíček P; Šála M; Hodgkinson P; Dračínský M
    Faraday Discuss; 2018 Dec; 212(0):331-344. PubMed ID: 30234207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and Theoretical Evidence of Spin-Orbit Heavy Atom on the Light Atom
    Vícha J; Švec P; Růžičková Z; Samsonov MA; Bártová K; Růžička A; Straka M; Dračínský M
    Chemistry; 2020 Jul; 26(40):8698-8702. PubMed ID: 32297684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature Dependence of NMR Parameters Calculated from Path Integral Molecular Dynamics Simulations.
    Dračínský M; Bouř P; Hodgkinson P
    J Chem Theory Comput; 2016 Mar; 12(3):968-73. PubMed ID: 26857802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol.
    Tsipis AC; Karapetsas IN
    Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Magic-Angle Spinning NMR Method for the Site-Specific Measurement of Proton Chemical-Shift Anisotropy in Biological and Organic Solids.
    Hou G; Gupta R; Polenova T; Vega AJ
    Isr J Chem; 2014 Feb; 54(1-2):171-183. PubMed ID: 25484446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.
    Kraus J; Gupta R; Yehl J; Lu M; Case DA; Gronenborn AM; Akke M; Polenova T
    J Phys Chem B; 2018 Mar; 122(11):2931-2939. PubMed ID: 29498857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of chemical-shift tensors of heavy nuclei: a DFT/ZORA investigation of ¹⁹⁹Hg chemical-shift tensors in solids, and the effects of cluster size and electronic-state approximations.
    Alkan F; Dybowski C
    Phys Chem Chem Phys; 2014 Jul; 16(27):14298-308. PubMed ID: 24916317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the geometry of hydrogen bonds in solids with picometer accuracy by quantum-chemical calculations and NMR spectroscopy.
    Schulz-Dobrick M; Metzroth T; Spiess HW; Gauss J; Schnell I
    Chemphyschem; 2005 Feb; 6(2):315-27. PubMed ID: 15751355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution enhancement and proton proximity probed by 3D TQ/DQ/SQ proton NMR spectroscopy under ultrafast magic-angle-spinning beyond 70 kHz.
    Zhang R; Duong NT; Nishiyama Y
    J Magn Reson; 2019 Jul; 304():78-86. PubMed ID: 31146121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.
    Fedorov SV; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton-detected 3D
    Pandey MK; Damron JT; Ramamoorthy A; Nishiyama Y
    Solid State Nucl Magn Reson; 2019 Feb; 97():40-45. PubMed ID: 30623800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects.
    Demissie TB
    J Chem Phys; 2017 Nov; 147(17):174301. PubMed ID: 29117685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy.
    Zhang R; Mroue KH; Ramamoorthy A
    J Chem Phys; 2015 Oct; 143(14):144201. PubMed ID: 26472372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of lanthanum coordination compounds by using solid-state 139La NMR spectroscopy and relativistic density functional theory.
    Willans MJ; Feindel KW; Ooms KJ; Wasylishen RE
    Chemistry; 2005 Dec; 12(1):159-68. PubMed ID: 16224769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refinement of labile hydrogen positions based on DFT calculations of
    Siskos MG; Choudhary MI; Gerothanassis IP
    Org Biomol Chem; 2017 May; 15(21):4655-4666. PubMed ID: 28513720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.