These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32691751)

  • 21. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent achievments in the design and engineering of artificial metalloenzymes.
    Dürrenberger M; Ward TR
    Curr Opin Chem Biol; 2014 Apr; 19():99-106. PubMed ID: 24608081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial metalloenzymes derived from three-helix bundles.
    Tebo AG; Pecoraro VL
    Curr Opin Chem Biol; 2015 Apr; 25():65-70. PubMed ID: 25579452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial metalloenzymes for enantioselective catalysis.
    Bos J; Roelfes G
    Curr Opin Chem Biol; 2014 Apr; 19():135-43. PubMed ID: 24608083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Periplasmic Screening for Artificial Metalloenzymes.
    Jeschek M; Panke S; Ward TR
    Methods Enzymol; 2016; 580():539-56. PubMed ID: 27586348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes.
    Adachi T; Harada A; Yamaguchi H
    Sci Rep; 2019 Sep; 9(1):13551. PubMed ID: 31537832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals.
    Amrein B; Schmid M; Collet G; Cuniasse P; Gilardoni F; Seebeck FP; Ward TR
    Metallomics; 2012 Apr; 4(4):379-88. PubMed ID: 22392271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards the Evolution of Artificial Metalloenzymes-A Protein Engineer's Perspective.
    Markel U; Sauer DF; Schiffels J; Okuda J; Schwaneberg U
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4454-4464. PubMed ID: 30431222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multidrug resistance regulators (MDRs) as scaffolds for the design of artificial metalloenzymes.
    Bersellini M; Roelfes G
    Org Biomol Chem; 2017 Apr; 15(14):3069-3073. PubMed ID: 28321451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging artificial metalloenzymes for asymmetric hydrogenation reactions.
    Goralski ST; Rose MJ
    Curr Opin Chem Biol; 2022 Feb; 66():102096. PubMed ID: 34879303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Metalloprotein Functions in Designed and Native Scaffolds.
    Nastri F; D'Alonzo D; Leone L; Zambrano G; Pavone V; Lombardi A
    Trends Biochem Sci; 2019 Dec; 44(12):1022-1040. PubMed ID: 31307903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism.
    Jeschek M; Panke S; Ward TR
    Trends Biotechnol; 2018 Jan; 36(1):60-72. PubMed ID: 29061328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine Learning Approaches for Metalloproteins.
    Yu Y; Wang R; Teo RD
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning differentiates enzymatic and non-enzymatic metals in proteins.
    Feehan R; Franklin MW; Slusky JSG
    Nat Commun; 2021 Jun; 12(1):3712. PubMed ID: 34140507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging strategies for expanding the toolbox of enzymes in biocatalysis.
    Sandoval BA; Hyster TK
    Curr Opin Chem Biol; 2020 Apr; 55():45-51. PubMed ID: 31935627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporating metals into de novo proteins.
    Peacock AF
    Curr Opin Chem Biol; 2013 Dec; 17(6):934-9. PubMed ID: 24183813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal complexes as structural templates for targeting proteins.
    Dörr M; Meggers E
    Curr Opin Chem Biol; 2014 Apr; 19():76-81. PubMed ID: 24561508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-binding promiscuity in artificial metalloenzyme design.
    Pordea A
    Curr Opin Chem Biol; 2015 Apr; 25():124-32. PubMed ID: 25603469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.