These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32691897)

  • 1. Strategies to Enable Reversible Magnesium Electrochemistry: From Electrolytes to Artificial Solid-Electrolyte Interphases.
    Liang Z; Ban C
    Angew Chem Int Ed Engl; 2021 May; 60(20):11036-11047. PubMed ID: 32691897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes.
    Son SB; Gao T; Harvey SP; Steirer KX; Stokes A; Norman A; Wang C; Cresce A; Xu K; Ban C
    Nat Chem; 2018 May; 10(5):532-539. PubMed ID: 29610460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example.
    Gao T; Hou S; Huynh K; Wang F; Eidson N; Fan X; Han F; Luo C; Mao M; Li X; Wang C
    ACS Appl Mater Interfaces; 2018 May; 10(17):14767-14776. PubMed ID: 29620854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrolyte and Interphase Design for Magnesium Anode: Major Challenges and Perspectives.
    Sun Y; Ai F; Lu YC
    Small; 2022 Oct; 18(43):e2200009. PubMed ID: 35315571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Magnesium Metal Anode Enabled by Cooperative Solvation/Surface Engineering in Carbonate Electrolytes.
    Wang C; Huang Y; Lu Y; Pan H; Xu BB; Sun W; Yan M; Jiang Y
    Nanomicro Lett; 2021 Sep; 13(1):195. PubMed ID: 34523042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Stable Solid Electrolyte Interphase for Magnesium Metal Anode Evolved from a Bulky Anion Lithium Salt.
    Tang K; Du A; Dong S; Cui Z; Liu X; Lu C; Zhao J; Zhou X; Cui G
    Adv Mater; 2020 Feb; 32(6):e1904987. PubMed ID: 31850607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-State Electrolytes for Rechargeable Magnesium-Ion Batteries: From Structure to Mechanism.
    Guo M; Yuan C; Zhang T; Yu X
    Small; 2022 Oct; 18(43):e2106981. PubMed ID: 35182102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries.
    Lei X; Liang X; Yang R; Zhang F; Wang C; Lee CS; Tang Y
    Small; 2022 Jun; 18(22):e2200418. PubMed ID: 35315220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress and Perspective on Rechargeable Magnesium-Sulfur Batteries.
    Lu Y; Wang C; Liu Q; Li X; Zhao X; Guo Z
    Small Methods; 2021 May; 5(5):e2001303. PubMed ID: 34928077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring Na
    Wang L; Ren N; Jiang W; Yang H; Ye S; Jiang Y; Ali G; Song L; Wu X; Rui X; Yao Y; Yu Y
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202320060. PubMed ID: 38285010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the Ethylene Carbonate-Propylene Carbonate Mystery in Li-Ion Batteries.
    Xing L; Zheng X; Schroeder M; Alvarado J; von Wald Cresce A; Xu K; Li Q; Li W
    Acc Chem Res; 2018 Feb; 51(2):282-289. PubMed ID: 29381050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Design Strategies for Rechargeable Magnesium-Based Batteries.
    Zhang J; Chang Z; Zhang Z; Du A; Dong S; Li Z; Li G; Cui G
    ACS Nano; 2021 Oct; 15(10):15594-15624. PubMed ID: 34633797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries.
    Bitenc J; Pirnat K; Bančič T; Gaberšček M; Genorio B; Randon-Vitanova A; Dominko R
    ChemSusChem; 2015 Dec; 8(24):4128-32. PubMed ID: 26610185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial Reconstruction Toward Reversible Mg Anode in Conventional Electrolytes.
    Wang C; Huang H; Wu X; Yousaf M; Yan M; Jiang Y
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37880200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium Anode Protection by an Organic Artificial Solid Electrolyte Interphase for Magnesium-Sulfur Batteries.
    Häcker J; Rommel T; Lange P; Zhao-Karger Z; Morawietz T; Biswas I; Wagner N; Nojabaee M; Friedrich KA
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):33013-33027. PubMed ID: 37389477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrolyte Interphases in Aqueous Batteries.
    Sui Y; Ji X
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202312585. PubMed ID: 37749061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.