BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 32691987)

  • 1. Radioiodinated Persistent Luminescence Nanoplatform for Radiation-Induced Photodynamic Therapy and Radiotherapy.
    Wang Q; Liu N; Hou Z; Shi J; Su X; Sun X
    Adv Healthc Mater; 2021 Mar; 10(5):e2000802. PubMed ID: 32691987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LiGa
    Chen H; Sun X; Wang GD; Nagata K; Hao Z; Wang A; Li Z; Xie J; Shen B
    Mater Horiz; 2017 Nov; 4(6):1092-1101. PubMed ID: 31528350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent Luminescence Nanoplatform for Autofluorescence-Free Tracking of Submicrometer Plastic Particles in Plant.
    Hao F; Yan ZY; Wang Z; Yan XP
    Anal Chem; 2024 Jun; ():. PubMed ID: 38875183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Photodynamic Therapy Promoted by Cherenkov Light Activated Photosensitizers-New Aspects and Revelations.
    Hübinger L; Wetzig K; Runge R; Hartmann H; Tillner F; Tietze K; Pretze M; Kästner D; Freudenberg R; Brogsitter C; Kotzerke J
    Pharmaceutics; 2024 Apr; 16(4):. PubMed ID: 38675195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodynamic Therapy of Cancers With Internal Light Sources: Chemiluminescence, Bioluminescence, and Cerenkov Radiation.
    Zhang Y; Hao Y; Chen S; Xu M
    Front Chem; 2020; 8():770. PubMed ID: 33088801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Self-Exciting Photodynamic Therapy.
    Blum NT; Zhang Y; Qu J; Lin J; Huang P
    Front Bioeng Biotechnol; 2020; 8():594491. PubMed ID: 33195164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart
    Guo J; Feng K; Wu W; Ruan Y; Liu H; Han X; Shao G; Sun X
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21884-21889. PubMed ID: 34374188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous yolk-shell Fe/Fe
    Liang H; Guo J; Shi Y; Zhao G; Sun S; Sun X
    Biomaterials; 2021 Jan; 268():120530. PubMed ID: 33296795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards overcoming obstacles of type II photodynamic therapy: Endogenous production of light, photosensitizer, and oxygen.
    Yu L; Liu Z; Xu W; Jin K; Liu J; Zhu X; Zhang Y; Wu Y
    Acta Pharm Sin B; 2024 Mar; 14(3):1111-1131. PubMed ID: 38486983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine.
    Hu Q; Zuo H; Hsu JC; Zeng C; Tian Z; Sun Z; Cai W; Tang Z; Chen W
    Adv Mater; 2024 Feb; 36(5):e2308286. PubMed ID: 37971203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of injectable hydrogels in cancer immunotherapy.
    Liu C; Liao Y; Liu L; Xie L; Liu J; Zhang Y; Li Y
    Front Bioeng Biotechnol; 2023; 11():1121887. PubMed ID: 36815890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerenkov radiation-activated probes for deep cancer theranostics: a review.
    Liu N; Su X; Sun X
    Theranostics; 2022; 12(17):7404-7419. PubMed ID: 36438500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic radiosensitization: Insights from materials physicochemistry.
    Wang Y; Zhang H; Liu Y; Younis MH; Cai W; Bu W
    Mater Today (Kidlington); 2022; 57():262-278. PubMed ID: 36425004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of nano-photosensitizers by Y-90 microspheres to enhance oxidative stress and cell death in hepatocellular carcinoma.
    Malone CD; Egbulefu C; Zheleznyak A; Polina J; Karmakar P; Black K; Shokeen M; Achilefu S
    Sci Rep; 2022 Jul; 12(1):12748. PubMed ID: 35882949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of a versatile mitochondria-targeting small molecule for cancer near-infrared fluorescent imaging and radio/photodynamic/photothermal synergistic therapies.
    Gao M; Huang X; Wu Z; Wang L; Yuan S; Du Z; Luo S; Li R; Wang W
    Mater Today Bio; 2022 Jun; 15():100316. PubMed ID: 35721281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress of Metal-Organic Framework-Based Photodynamic Therapy for Cancer Treatment.
    Ye Y; Zhao Y; Sun Y; Cao J
    Int J Nanomedicine; 2022; 17():2367-2395. PubMed ID: 35637838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-Tissue Activation of Photonanomedicines: An Update and Clinical Perspectives.
    Shah N; Squire J; Guirguis M; Saha D; Hoyt K; Wang KK; Agarwal V; Obaid G
    Cancers (Basel); 2022 Apr; 14(8):. PubMed ID: 35454910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in Nanocarriers Codelivery System to Enhance the Anticancer Effect of Photodynamic Therapy.
    Yang YL; Lin K; Yang L
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances of Nanomedicine in Radiotherapy.
    Liu W; Chen B; Zheng H; Xing Y; Chen G; Zhou P; Qian L; Min Y
    Pharmaceutics; 2021 Oct; 13(11):. PubMed ID: 34834172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-Assisted Preparation of Luminescent Inorganic Materials: A Fast Route to Light Conversion and Storage Phosphors.
    Miranda de Carvalho J; Pedroso CCS; Saula MSN; Felinto MCFC; Brito HF
    Molecules; 2021 May; 26(10):. PubMed ID: 34068050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.