These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32692184)

  • 1. Extending Vacuum Trapping to Absorbing Objects with Hybrid Paul-Optical Traps.
    Conangla GP; Rica RA; Quidant R
    Nano Lett; 2020 Aug; 20(8):6018-6023. PubMed ID: 32692184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum.
    Conangla GP; Schell AW; Rica RA; Quidant R
    Nano Lett; 2018 Jun; 18(6):3956-3961. PubMed ID: 29772171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum.
    Hsu JF; Ji P; Lewandowski CW; D'Urso B
    Sci Rep; 2016 Jul; 6():30125. PubMed ID: 27444654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity cooling a single charged levitated nanosphere.
    Millen J; Fonseca PZ; Mavrogordatos T; Monteiro TS; Barker PF
    Phys Rev Lett; 2015 Mar; 114(12):123602. PubMed ID: 25860743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid electro-optical trap for experiments with levitated particles in vacuum.
    Bykov DS; Meusburger M; Dania L; Northup TE
    Rev Sci Instrum; 2022 Jul; 93(7):073201. PubMed ID: 35922316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optomechanically induced optical trapping system based on photonic crystal cavities.
    Monterrosas-Romero M; Alavi SK; Koistinen EM; Hong S
    Opt Express; 2023 Jun; 31(12):20398-20409. PubMed ID: 37381435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum levitation and motion control on chip.
    Melo B; T Cuairan M; Tomassi GFM; Meyer N; Quidant R
    Nat Nanotechnol; 2024 Sep; 19(9):1270-1276. PubMed ID: 38844665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Interrogation of Single Levitated Droplets in a Linear Quadrupole Trap by Cavity Ring-Down Spectroscopy.
    Valenzuela A; Chu F; Haddrell AE; Cotterell MI; Walker JS; Orr-Ewing AJ; Reid JP
    J Phys Chem A; 2021 Jan; 125(1):394-405. PubMed ID: 33355458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets.
    Price CJ; Donnelly TD; Giltrap S; Stuart NH; Parker S; Patankar S; Lowe HF; Drew D; Gumbrell ET; Smith RA
    Rev Sci Instrum; 2015 Mar; 86(3):033502. PubMed ID: 25832224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An apparatus for in-vacuum loading of nanoparticles into an optical trap.
    Weisman E; Galla CK; Montoya C; Alejandro E; Lim J; Beck M; Winstone GP; Grinin A; Eom W; Geraci AA
    Rev Sci Instrum; 2022 Nov; 93(11):115115. PubMed ID: 36461504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments.
    Ostermayr TM; Gebhard J; Haffa D; Kiefer D; Kreuzer C; Allinger K; Bömer C; Braenzel J; Schnürer M; Cermak I; Schreiber J; Hilz P
    Rev Sci Instrum; 2018 Jan; 89(1):013302. PubMed ID: 29390683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass measurement under medium vacuum in optically levitated nanoparticles based on Maxwell speed distribution law.
    Chen P; Li N; Chen X; Liang T; He P; Wang D; Hu H
    Opt Express; 2024 Jun; 32(12):21806-21819. PubMed ID: 38859526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical attraction of strongly absorbing particles in liquids.
    Zhang Y; Tang X; Zhang Y; Liu Z; Yang X; Zhang J; Yang J; Yuan L
    Opt Express; 2019 Apr; 27(9):12414-12423. PubMed ID: 31052781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Levitated Optomechanics with Meta-Atoms.
    Lepeshov S; Meyer N; Maurer P; Romero-Isart O; Quidant R
    Phys Rev Lett; 2023 Jun; 130(23):233601. PubMed ID: 37354398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry-induced electrostatic trapping of nanometric objects in a fluid.
    Krishnan M; Mojarad N; Kukura P; Sandoghdar V
    Nature; 2010 Oct; 467(7316):692-5. PubMed ID: 20930840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Printed-circuit-board linear Paul trap for manipulating single nano- and microparticles.
    Partner HL; Zoll J; Kuhlicke A; Benson O
    Rev Sci Instrum; 2018 Aug; 89(8):083101. PubMed ID: 30184697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinearity-Induced Multiplexed Optical Trapping and Manipulation with Femtosecond Vector Beams.
    Zhang Y; Shen J; Min C; Jin Y; Jiang Y; Liu J; Zhu S; Sheng Y; Zayats AV; Yuan X
    Nano Lett; 2018 Sep; 18(9):5538-5543. PubMed ID: 30089210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Single Large Assembly with Dynamically Fluctuating Swarms of Gold Nanoparticles Formed by Trapping Laser.
    Kudo T; Yang SJ; Masuhara H
    Nano Lett; 2018 Sep; 18(9):5846-5853. PubMed ID: 30071730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum control of a nanoparticle optically levitated in cryogenic free space.
    Tebbenjohanns F; Mattana ML; Rossi M; Frimmer M; Novotny L
    Nature; 2021 Jul; 595(7867):378-382. PubMed ID: 34262214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and Suppression of Laser Intensity Fluctuation in a Dual-Beam Optical Levitation System.
    Wang X; Zhu Q; Hu M; Li W; Chen X; Li N; Zhu X; Hu H
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.