These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 32692251)
1. Quantitative Structure-Activity Relationship Models for Predicting Inflammatory Potential of Metal Oxide Nanoparticles. Huang Y; Li X; Xu S; Zheng H; Zhang L; Chen J; Hong H; Kusko R; Li R Environ Health Perspect; 2020 Jun; 128(6):67010. PubMed ID: 32692251 [TBL] [Abstract][Full Text] [Related]
2. Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells: Machine learning boosts nano-safety assessment. Huang Y; Li X; Cao J; Wei X; Li Y; Wang Z; Cai X; Li R; Chen J Environ Int; 2022 Jun; 164():107258. PubMed ID: 35483183 [TBL] [Abstract][Full Text] [Related]
3. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Mu Y; Wu F; Zhao Q; Ji R; Qie Y; Zhou Y; Hu Y; Pang C; Hristozov D; Giesy JP; Xing B Nanotoxicology; 2016 Nov; 10(9):1207-14. PubMed ID: 27309010 [TBL] [Abstract][Full Text] [Related]
4. Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach. Roy J; Roy K SAR QSAR Environ Res; 2023; 34(6):459-474. PubMed ID: 37350771 [TBL] [Abstract][Full Text] [Related]
5. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides. Basant N; Gupta S Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981 [TBL] [Abstract][Full Text] [Related]
6. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892 [TBL] [Abstract][Full Text] [Related]
7. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542 [TBL] [Abstract][Full Text] [Related]
8. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319 [TBL] [Abstract][Full Text] [Related]
9. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. Li J; Wang C; Yue L; Chen F; Cao X; Wang Z Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199 [TBL] [Abstract][Full Text] [Related]
10. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to Roy J; Roy K Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631 [TBL] [Abstract][Full Text] [Related]
11. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Cohen JM; Teeguarden JG; Demokritou P Part Fibre Toxicol; 2014 May; 11():20. PubMed ID: 24885440 [TBL] [Abstract][Full Text] [Related]
12. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles. Zhang F; Wang Z; Peijnenburg WJGM; Vijver MG Environ Int; 2023 Jul; 177():108025. PubMed ID: 37329761 [TBL] [Abstract][Full Text] [Related]
14. Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Xia T; Hamilton RF; Bonner JC; Crandall ED; Elder A; Fazlollahi F; Girtsman TA; Kim K; Mitra S; Ntim SA; Orr G; Tagmount M; Taylor AJ; Telesca D; Tolic A; Vulpe CD; Walker AJ; Wang X; Witzmann FA; Wu N; Xie Y; Zink JI; Nel A; Holian A Environ Health Perspect; 2013 Jun; 121(6):683-90. PubMed ID: 23649538 [TBL] [Abstract][Full Text] [Related]
15. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Cai X; Lee A; Ji Z; Huang C; Chang CH; Wang X; Liao YP; Xia T; Li R Part Fibre Toxicol; 2017 Apr; 14(1):13. PubMed ID: 28431555 [TBL] [Abstract][Full Text] [Related]
16. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798 [TBL] [Abstract][Full Text] [Related]
17. A data reusability assessment in the nanosafety domain based on the NSDRA framework followed by an exploratory quantitative structure activity relationships (QSAR) modeling targeting cellular viability. Furxhi I; Willighagen E; Evelo C; Costa A; Gardini D; Ammar A NanoImpact; 2023 Jul; 31():100475. PubMed ID: 37423508 [TBL] [Abstract][Full Text] [Related]
18. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Kar S; Gajewicz A; Puzyn T; Roy K; Leszczynski J Ecotoxicol Environ Saf; 2014 Sep; 107():162-9. PubMed ID: 24949897 [TBL] [Abstract][Full Text] [Related]
19. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Roy J; Roy K Nanotoxicology; 2022 Jun; 16(5):629-644. PubMed ID: 36260491 [TBL] [Abstract][Full Text] [Related]
20. Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials. Choi JS; Trinh TX; Yoon TH; Kim J; Byun HG Chemosphere; 2019 Feb; 217():243-249. PubMed ID: 30419378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]