These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32692307)

  • 1. Exploiting the rationale behind substrate recognition by promiscuous thermophilic NDP-sugar pyrophosphorylase for expanding glycorandomization: an
    Gogoi P; Mordina P; Kanaujia SP
    J Biomol Struct Dyn; 2021 Oct; 39(16):6099-6111. PubMed ID: 32692307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of two highly promiscuous thermostable sugar nucleotidylyltransferases for glycorandomization.
    Bais VS; Batra S; Prakash B
    FEBS J; 2018 Aug; 285(15):2840-2855. PubMed ID: 29806742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neoglycorandomization and chemoenzymatic glycorandomization: two complementary tools for natural product diversification.
    Langenhan JM; Griffith BR; Thorson JS
    J Nat Prod; 2005 Nov; 68(11):1696-711. PubMed ID: 16309329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'Sweetening' natural products via glycorandomization.
    Griffith BR; Langenhan JM; Thorson JS
    Curr Opin Biotechnol; 2005 Dec; 16(6):622-30. PubMed ID: 16226456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization.
    Yang J; Fu X; Liao J; Liu L; Thorson JS
    Chem Biol; 2005 Jun; 12(6):657-64. PubMed ID: 15975511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution.
    Williams GJ; Zhang C; Thorson JS
    Nat Chem Biol; 2007 Oct; 3(10):657-62. PubMed ID: 17828251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant E. coli prototype strains for in vivo glycorandomization.
    Williams GJ; Yang J; Zhang C; Thorson JS
    ACS Chem Biol; 2011 Jan; 6(1):95-100. PubMed ID: 20886903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnological advances in UDP-sugar based glycosylation of small molecules.
    De Bruyn F; Maertens J; Beauprez J; Soetaert W; De Mey M
    Biotechnol Adv; 2015; 33(2):288-302. PubMed ID: 25698505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycorandomization: A promising diversification strategy for the drug development.
    Goel B; Tripathi N; Mukherjee D; Jain SK
    Eur J Med Chem; 2021 Mar; 213():113156. PubMed ID: 33460832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback Inhibition of Bacterial Nucleotidyltransferases by Rare Nucleotide l-Sugars Restricts Substrate Promiscuity.
    Zheng M; Zheng MC; Kim H; Lupoli TJ
    J Am Chem Soc; 2023 Jul; 145(29):15632-15638. PubMed ID: 37283497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing
    Decker D; Kleczkowski LA
    Front Plant Sci; 2018; 9():1822. PubMed ID: 30662444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual commonality in active site structural features of substrate promiscuous and specialist enzymes.
    Thakur D; Pandit SB
    J Struct Biol; 2022 Mar; 214(1):107835. PubMed ID: 35104611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of the first anomeric D/L-sugar kinase by means of directed evolution.
    Hoffmeister D; Yang J; Liu L; Thorson JS
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13184-9. PubMed ID: 14612558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of UDP-glucose pyrophosphorylase in cyanobacteria Anabaena sp. PCC 7120.
    Kawano Y; Sekine M; Ihara M
    J Biosci Bioeng; 2014 May; 117(5):531-8. PubMed ID: 24231376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C
    Shin SM; Cao TP; Choi JM; Kim SB; Lee SJ; Lee SH; Lee DW
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promiscuity and specificity of eukaryotic glycosyltransferases.
    Biswas A; Thattai M
    Biochem Soc Trans; 2020 Jun; 48(3):891-900. PubMed ID: 32539082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphomannose isomerase/GDP-mannose pyrophosphorylase from Pyrococcus furiosus: a thermostable biocatalyst for the synthesis of guanidinediphosphate-activated and mannose-containing sugar nucleotides.
    Mizanur RM; Pohl NL
    Org Biomol Chem; 2009 May; 7(10):2135-9. PubMed ID: 19421452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiotic optimization via in vitro glycorandomization.
    Fu X; Albermann C; Jiang J; Liao J; Zhang C; Thorson JS
    Nat Biotechnol; 2003 Dec; 21(12):1467-9. PubMed ID: 14608364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding pyrimidine diphosphosugar libraries via structure-based nucleotidylyltransferase engineering.
    Barton WA; Biggins JB; Jiang J; Thorson JS; Nikolov DB
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13397-402. PubMed ID: 12374866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization.
    Barton WA; Lesniak J; Biggins JB; Jeffrey PD; Jiang J; Rajashankar KR; Thorson JS; Nikolov DB
    Nat Struct Biol; 2001 Jun; 8(6):545-51. PubMed ID: 11373625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.