These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 32692335)

  • 1. Promising photovoltaic efficiency of a layered silicon oxide crystal Si
    Kim S; Chae K; Son YW
    Nanoscale; 2020 Aug; 12(29):15638-15642. PubMed ID: 32692335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolayer HfTeSe
    Yang H; Ma Y; Liang Y; Huang B; Dai Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37901-37907. PubMed ID: 31549808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials.
    Yu L; Zunger A
    Phys Rev Lett; 2012 Feb; 108(6):068701. PubMed ID: 22401127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Investigation of Delafossite-Cu
    Kang SH; Kang M; Hwang SW; Yeom S; Yoon M; Ok JM; Yoon S
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable AgX (X = Se, Te) for Efficient Thermoelectrics and Photovoltaics.
    Robin Chang YH; Jiang J; Khong HY; Saad I; Chai SS; Mahat MM; Tao S
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25121-25136. PubMed ID: 34008948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon.
    Bercx M; Sarmadian N; Saniz R; Partoens B; Lamoen D
    Phys Chem Chem Phys; 2016 Jul; 18(30):20542-9. PubMed ID: 27405243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KAgSe: A New Two-Dimensional Efficient Photovoltaic Material with Layer-Independent Behaviors.
    Wang Q; Li J; Liang Y; Nie Y; Wang B
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41670-41677. PubMed ID: 30384582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct band gap silicon allotropes.
    Wang Q; Xu B; Sun J; Liu H; Zhao Z; Yu D; Fan C; He J
    J Am Chem Soc; 2014 Jul; 136(28):9826-9. PubMed ID: 24971657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliable Prediction of New Quantum Materials for Topological and Renewable-Energy Applications: A High-Throughput Screening.
    Sahni B; Vikram ; Kangsabanik J; Alam A
    J Phys Chem Lett; 2020 Aug; 11(15):6364-6372. PubMed ID: 32702983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional Blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties.
    Cai X; Chen Y; Sun B; Chen J; Wang H; Ni Y; Tao L; Wang H; Zhu S; Li X; Wang Y; Lv J; Feng X; Redfern SAT; Chen Z
    Nanoscale; 2019 Apr; 11(17):8260-8269. PubMed ID: 30976766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of Novel Non-Silicon Materials for Photovoltaic Applications: A First-Principle Insight.
    Rasukkannu M; Velauthapillai D; Bianchini F; Vajeeston P
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30336564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the number of layers on the vibrational, electronic and optical properties of alpha lead oxide.
    Bakhtatou A; Ersan F
    Phys Chem Chem Phys; 2019 Feb; 21(7):3868-3876. PubMed ID: 30702102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of pnictides for photovoltaic applications.
    Kumar J; Sai Gautam G
    Phys Chem Chem Phys; 2023 Mar; 25(13):9626-9635. PubMed ID: 36943099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, vibrational, and quasiparticle band structure of 1,1-diamino-2,2-dinitroethelene from ab initio calculations.
    Appalakondaiah S; Vaitheeswaran G; Lebègue S
    J Chem Phys; 2014 Jan; 140(1):014105. PubMed ID: 24410219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicted CsSi compound: a promising material for photovoltaic applications.
    Du Y; Li W; Zurek E; Gao L; Cui X; Zhang M; Liu H; Tian Y; Zhang S; Zhang D
    Phys Chem Chem Phys; 2020 May; 22(20):11578-11582. PubMed ID: 32400781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility.
    Dai J; Zeng XC
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7572-6. PubMed ID: 25966901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Layer Bismuth Iodide: Computational Exploration of Structural, Electrical, Mechanical and Optical Properties.
    Ma F; Zhou M; Jiao Y; Gao G; Gu Y; Bilic A; Chen Z; Du A
    Sci Rep; 2015 Dec; 5():17558. PubMed ID: 26626797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Six new silicon phases with direct band gaps.
    Wei Q; Tong W; Wei B; Zhang M; Peng X
    Phys Chem Chem Phys; 2019 Sep; 21(36):19963-19968. PubMed ID: 31478037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SnP
    Jing Y; Zhou Z; Zhang J; Huang C; Li Y; Wang F
    Phys Chem Chem Phys; 2019 Oct; 21(37):21064-21069. PubMed ID: 31528951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio calculation of pentacene-PbSe hybrid interface for photovoltaic applications.
    Roy P; Nguyen TP
    Phys Chem Chem Phys; 2016 Jul; 18(27):18209-18. PubMed ID: 27332630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.