These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 32692343)

  • 41. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
    Zhao X; Zhao N; Shi Y; Xin H; Li B
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heat-Mediated Optical Manipulation.
    Chen Z; Li J; Zheng Y
    Chem Rev; 2022 Feb; 122(3):3122-3179. PubMed ID: 34797041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical Manipulation along an Optical Axis with a Polarization Sensitive Meta-Lens.
    Markovich H; Shishkin II; Hendler N; Ginzburg P
    Nano Lett; 2018 Aug; 18(8):5024-5029. PubMed ID: 29949377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical manipulation: advances for biophotonics in the 21st century.
    Corsetti S; Dholakia K
    J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34235899
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Speckle optical tweezers: micromanipulation with random light fields.
    Volpe G; Kurz L; Callegari A; Volpe G; Gigan S
    Opt Express; 2014 Jul; 22(15):18159-67. PubMed ID: 25089434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch.
    Masterson AN; Hati S; Ren G; Liyanage T; Manicke NE; Goodpaster JV; Sardar R
    Anal Chem; 2021 Feb; 93(4):2578-2588. PubMed ID: 33432809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scalable trapping of single nanosized extracellular vesicles using plasmonics.
    Hong C; Ndukaife JC
    Nat Commun; 2023 Aug; 14(1):4801. PubMed ID: 37558710
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stable SERS Detection of Lactobacillus fermentum Using Optical Tweezers in a Microfluidic Environment.
    Shang L; Liang P; Xu L; Xue Y; Liu K; Wang Y; Bao X; Chen F; Peng H; Wang Y; Ju J; Li B
    Anal Chem; 2024 Jan; 96(1):248-255. PubMed ID: 38113377
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Feasibility of multiple micro-particle trapping--a simulation study.
    Yu Y; Qiu W; Chiu B; Sun L
    Sensors (Basel); 2015 Feb; 15(3):4958-74. PubMed ID: 25734646
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasmonic Trapping and Release of Nanoparticles in a Monitoring Environment.
    Kim JD; Lee YG
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28447977
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonlinear modulation on optical trapping in a plasmonic bowtie structure.
    Zhang W; Zhang Y; Zhang S; Wang Y; Yang W; Min C; Yuan X
    Opt Express; 2021 Apr; 29(8):11664-11673. PubMed ID: 33984942
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New opto-plasmonic tweezers for manipulation and rotation of biological cells--design and fabrication.
    Miao X; Lin LY
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4318-21. PubMed ID: 17946622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical trapping for analytical biotechnology.
    Ashok PC; Dholakia K
    Curr Opin Biotechnol; 2012 Feb; 23(1):16-21. PubMed ID: 22154469
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells.
    Lin L; Peng X; Wei X; Mao Z; Xie C; Zheng Y
    ACS Nano; 2017 Mar; 11(3):3147-3154. PubMed ID: 28230355
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlation of surface-enhanced Raman spectroscopy and laser desorption-ionization mass spectrometry acquired from silver nanoparticle substrates.
    Nie B; Masyuko RN; Bohn PW
    Analyst; 2012 Mar; 137(6):1421-7. PubMed ID: 22314587
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrostatic tweezer for droplet manipulation.
    Jin Y; Xu W; Zhang H; Li R; Sun J; Yang S; Liu M; Mao H; Wang Z
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34992136
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.
    Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y
    ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.