These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1161 related articles for article (PubMed ID: 32692535)

  • 1. Polymer Acceptors Containing B←N Units for Organic Photovoltaics.
    Zhao R; Liu J; Wang L
    Acc Chem Res; 2020 Aug; 53(8):1557-1567. PubMed ID: 32692535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics.
    Cheng P; Yang Y
    Acc Chem Res; 2020 Jun; 53(6):1218-1228. PubMed ID: 32407622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium-Containing Organic Photovoltaic Materials.
    Fan B; Lin F; Wu X; Zhu Z; Jen AK
    Acc Chem Res; 2021 Oct; 54(20):3906-3916. PubMed ID: 34606230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonhalogenated-Solvent-Processed Efficient Polymer Solar Cells Enabled by Medium-Band-Gap A-π-D-π-A Small-Molecule Acceptors Based on a 6,12-Dihydro-diindolo[1,2-
    Chen L; Zeng M; Weng C; Tan S; Shen P
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48134-48146. PubMed ID: 31823611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells.
    Dou C; Long X; Ding Z; Xie Z; Liu J; Wang L
    Angew Chem Int Ed Engl; 2016 Jan; 55(4):1436-40. PubMed ID: 26663513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isomer Effects of Fullerene Derivatives on Organic Photovoltaics and Perovskite Solar Cells.
    Umeyama T; Imahori H
    Acc Chem Res; 2019 Aug; 52(8):2046-2055. PubMed ID: 31318521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics.
    Li S; Zhan L; Jin Y; Zhou G; Lau TK; Qin R; Shi M; Li CZ; Zhu H; Lu X; Zhang F; Chen H
    Adv Mater; 2020 Jun; 32(24):e2001160. PubMed ID: 32390241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small molecule semiconductors for high-efficiency organic photovoltaics.
    Lin Y; Li Y; Zhan X
    Chem Soc Rev; 2012 Jun; 41(11):4245-72. PubMed ID: 22453295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and Efficient Acceptor-Donor-Acceptor-Type Non-fullerene Acceptors for a BODIPY-Thiophene-Backboned Polymer Donor for High-Performance Indoor Photovoltaics.
    Rajagopalan R; Shankar S S; Balasubramaniyan N; Sharma GD
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13405-13414. PubMed ID: 36857615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fullerene-bisadduct acceptors for polymer solar cells.
    Li Y
    Chem Asian J; 2013 Oct; 8(10):2316-28. PubMed ID: 23853151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Polymer Electron Acceptor Based on Thiophene-S,S-dioxide Unit for Organic Photovoltaics.
    Meng B; Miao J; Liu J; Wang L
    Macromol Rapid Commun; 2018 Jan; 39(2):. PubMed ID: 29065237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant Rylene Imide-Based Electron Acceptors for Organic Photovoltaics.
    Liang N; Meng D; Wang Z
    Acc Chem Res; 2021 Feb; 54(4):961-975. PubMed ID: 33395252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-fullerene electron acceptors for use in organic solar cells.
    Nielsen CB; Holliday S; Chen HY; Cryer SJ; McCulloch I
    Acc Chem Res; 2015 Nov; 48(11):2803-12. PubMed ID: 26505279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organoboron molecules and polymers for organic solar cell applications.
    Miao J; Wang Y; Liu J; Wang L
    Chem Soc Rev; 2022 Jan; 51(1):153-187. PubMed ID: 34851333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices.
    Chen J; Cao Y
    Acc Chem Res; 2009 Nov; 42(11):1709-18. PubMed ID: 19572607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells.
    Zhang G; Zhao J; Chow PCY; Jiang K; Zhang J; Zhu Z; Zhang J; Huang F; Yan H
    Chem Rev; 2018 Apr; 118(7):3447-3507. PubMed ID: 29557657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-Friendly Solvent-Processed Dithienosilicon-Bridged Carbazole-Based Small-Molecule Acceptors Achieved over 25.7% PCE in Ternary Devices under Indoor Conditions.
    Busireddy MR; Huang SC; Su YJ; Lee ZY; Wang CH; Scharber MC; Chen JT; Hsu CS
    ACS Appl Mater Interfaces; 2023 May; 15(20):24658-24669. PubMed ID: 37186869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in Fused-Ring Based Nonfullerene Acceptors for Polymer Solar Cells.
    Cui C
    Front Chem; 2018; 6():404. PubMed ID: 30320056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.