These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32692561)

  • 1. Predictive Modeling of NMR Chemical Shifts without Using Atomic-Level Annotations.
    Kang S; Kwon Y; Lee D; Choi YS
    J Chem Inf Model; 2020 Aug; 60(8):3765-3769. PubMed ID: 32692561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Message Passing for NMR Chemical Shift Prediction.
    Kwon Y; Lee D; Choi YS; Kang M; Kang S
    J Chem Inf Model; 2020 Apr; 60(4):2024-2030. PubMed ID: 32250618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable graph neural network for NMR chemical shift prediction.
    Han J; Kang H; Kang S; Kwon Y; Lee D; Choi YS
    Phys Chem Chem Phys; 2022 Nov; 24(43):26870-26878. PubMed ID: 36317530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General Protocol for the Accurate Prediction of Molecular
    Gao P; Zhang J; Peng Q; Zhang J; Glezakou VA
    J Chem Inf Model; 2020 Aug; 60(8):3746-3754. PubMed ID: 32602715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COLMARppm: A Web Server Tool for the Accurate and Rapid Prediction of
    Rigel N; Li DW; Brüschweiler R
    Anal Chem; 2024 Jan; 96(2):701-709. PubMed ID: 38157361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR spectrum prediction for dynamic molecules by machine learning: A case study of trefoil knot molecule.
    Tsitsvero M; Pirillo J; Hijikata Y; Komatsuzaki T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37194718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method.
    Chandy SK; Thapa B; Raghavachari K
    Phys Chem Chem Phys; 2020 Dec; 22(47):27781-27799. PubMed ID: 33244526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy.
    Zeng Q; Fu Y; Tian Z; Lei Y; Zhang Y; Wang T; Mao H; Liu T; Curran WJ; Jani AB; Patel P; Yang X
    Phys Med Biol; 2020 Jun; 65(13):135002. PubMed ID: 32330922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction.
    Liu C; Sun Y; Davis R; Cardona ST; Hu P
    J Cheminform; 2023 Feb; 15(1):29. PubMed ID: 36843022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of 31P nuclear magnetic resonance chemical shifts for phosphines.
    Tong J; Liu S; Zhang S; Li SZ
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):837-46. PubMed ID: 17258501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2017 Mar; 13(3):1147-1158. PubMed ID: 28194972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning.
    Unzueta PA; Greenwell CS; Beran GJO
    J Chem Theory Comput; 2021 Feb; 17(2):826-840. PubMed ID: 33428408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Reaction Yield for Buchwald-Hartwig Cross-coupling Reactions Using Deep Learning.
    Sato A; Miyao T; Funatsu K
    Mol Inform; 2022 Feb; 41(2):e2100156. PubMed ID: 34585854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constrained-CNN losses for weakly supervised segmentation.
    Kervadec H; Dolz J; Tang M; Granger E; Boykov Y; Ben Ayed I
    Med Image Anal; 2019 May; 54():88-99. PubMed ID: 30851541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automated framework for NMR chemical shift calculations of small organic molecules.
    Yesiltepe Y; Nuñez JR; Colby SM; Thomas DG; Borkum MI; Reardon PN; Washton NM; Metz TO; Teeguarden JG; Govind N; Renslow RS
    J Cheminform; 2018 Oct; 10(1):52. PubMed ID: 30367288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks.
    Binev Y; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):940-5. PubMed ID: 15154760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time prediction of
    Guan Y; Shree Sowndarya SV; Gallegos LC; St John PC; Paton RS
    Chem Sci; 2021 Sep; 12(36):12012-12026. PubMed ID: 34667567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast determination of 13C NMR chemical shifts using artificial neural networks.
    Meiler J; Meusinger R; Will M
    J Chem Inf Comput Sci; 2000; 40(5):1169-76. PubMed ID: 11045810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ReaxFF-MPNN machine learning potential: a combination of reactive force field and message passing neural networks.
    Xue LY; Guo F; Wen YS; Feng SQ; Huang XN; Guo L; Li HS; Cui SX; Zhang GQ; Wang QL
    Phys Chem Chem Phys; 2021 Sep; 23(35):19457-19464. PubMed ID: 34524283
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.