These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 32692678)
1. Exploring the potential of photoluminescence spectroscopy in combination with Nile Red staining for microplastic detection. Konde S; Ornik J; Prume JA; Taiber J; Koch M Mar Pollut Bull; 2020 Oct; 159():111475. PubMed ID: 32692678 [TBL] [Abstract][Full Text] [Related]
2. Nile red staining in microplastic analysis-proposal for a reliable and fast identification approach for large microplastics. Hengstmann E; Fischer EK Environ Monit Assess; 2019 Sep; 191(10):612. PubMed ID: 31489505 [TBL] [Abstract][Full Text] [Related]
3. Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique. Meyers N; Catarino AI; Declercq AM; Brenan A; Devriese L; Vandegehuchte M; De Witte B; Janssen C; Everaert G Sci Total Environ; 2022 Jun; 823():153441. PubMed ID: 35124051 [TBL] [Abstract][Full Text] [Related]
4. Nile Red lifetime reveals microplastic identity. Sancataldo G; Avellone G; Vetri V Environ Sci Process Impacts; 2020 Nov; 22(11):2266-2275. PubMed ID: 33064112 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive assessment of factors influencing Nile red staining: Eliciting solutions for efficient microplastics analysis. Wang C; Jiang L; Liu R; He M; Cui X; Wang C Mar Pollut Bull; 2021 Oct; 171():112698. PubMed ID: 34245991 [TBL] [Abstract][Full Text] [Related]
6. Counterstaining to Separate Nile Red-Stained Microplastic Particles from Terrestrial Invertebrate Biomass. Maxwell S H; Melinda K F; Matthew G Environ Sci Technol; 2020 May; 54(9):5580-5588. PubMed ID: 32298090 [TBL] [Abstract][Full Text] [Related]
7. Nile Red staining for detecting microplastics in biota: Preliminary evidence. Nalbone L; Panebianco A; Giarratana F; Russell M Mar Pollut Bull; 2021 Nov; 172():112888. PubMed ID: 34454386 [TBL] [Abstract][Full Text] [Related]
8. Identification and quantification of microplastics using Nile Red staining. Shim WJ; Song YK; Hong SH; Jang M Mar Pollut Bull; 2016 Dec; 113(1-2):469-476. PubMed ID: 28340965 [TBL] [Abstract][Full Text] [Related]
9. Analyzing microplastics with Nile Red: Emerging trends, challenges, and prospects. Shruti VC; Pérez-Guevara F; Roy PD; Kutralam-Muniasamy G J Hazard Mater; 2022 Feb; 423(Pt B):127171. PubMed ID: 34537648 [TBL] [Abstract][Full Text] [Related]
10. Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Vermeiren P; Muñoz C; Ikejima K Environ Pollut; 2020 Jul; 262():114298. PubMed ID: 32163807 [TBL] [Abstract][Full Text] [Related]
11. Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples. Erni-Cassola G; Gibson MI; Thompson RC; Christie-Oleza JA Environ Sci Technol; 2017 Dec; 51(23):13641-13648. PubMed ID: 29112813 [TBL] [Abstract][Full Text] [Related]
12. Preparation of biological samples for microplastic identification by Nile Red. Prata JC; Sequeira IF; Monteiro SS; Silva ALP; da Costa JP; Dias-Pereira P; Fernandes AJS; da Costa FM; Duarte AC; Rocha-Santos T Sci Total Environ; 2021 Aug; 783():147065. PubMed ID: 34088143 [TBL] [Abstract][Full Text] [Related]
13. Quantification of microplastics using Nile Red in two bivalve species Perna viridis and Meretrix meretrix from three estuaries in Pondicherry, India and microplastic uptake by local communities through bivalve diet. Dowarah K; Patchaiyappan A; Thirunavukkarasu C; Jayakumar S; Devipriya SP Mar Pollut Bull; 2020 Apr; 153():110982. PubMed ID: 32275539 [TBL] [Abstract][Full Text] [Related]
14. Modification of fluorescence staining method for small-sized microplastic quantification: Focus on the interference exclusion and exposure time optimization. Hu W; Tang R; Yuan S; Gong M; Shi P; Wang W; Hu ZH Environ Sci Pollut Res Int; 2023 Apr; 30(19):56330-56342. PubMed ID: 36917381 [TBL] [Abstract][Full Text] [Related]
15. Exploring the Potential of Time-Resolved Photoluminescence Spectroscopy for the Detection of Plastics. Gies S; Schömann EM; Anna Prume J; Koch M Appl Spectrosc; 2020 Sep; 74(9):1161-1166. PubMed ID: 32436393 [TBL] [Abstract][Full Text] [Related]
16. Separation of microplastic from soil by centrifugation and its application to agricultural soil. Grause G; Kuniyasu Y; Chien MF; Inoue C Chemosphere; 2022 Feb; 288(Pt 3):132654. PubMed ID: 34718018 [TBL] [Abstract][Full Text] [Related]
17. Identifying microplastic litter with Laser Induced Breakdown Spectroscopy: A first approach. Sommer C; Schneider LM; Nguyen J; Prume JA; Lautze K; Koch M Mar Pollut Bull; 2021 Oct; 171():112789. PubMed ID: 34364135 [TBL] [Abstract][Full Text] [Related]
18. Differential staining lowers the false positive detection in a novel volumetric measurement technique of microplastics. Tarafdar A; Choi SH; Kwon JH J Hazard Mater; 2022 Jun; 432():128755. PubMed ID: 35358765 [TBL] [Abstract][Full Text] [Related]
19. First evidence of microplastics ingestion in benthic amphipods from Svalbard. Iannilli V; Pasquali V; Setini A; Corami F Environ Res; 2019 Dec; 179(Pt A):108811. PubMed ID: 31622894 [TBL] [Abstract][Full Text] [Related]
20. Detection limits are central to improve reporting standards when using Nile red for microplastic quantification. Nel HA; Chetwynd AJ; Kelleher L; Lynch I; Mansfield I; Margenat H; Onoja S; Goldberg Oppenheimer P; Sambrook Smith GH; Krause S Chemosphere; 2021 Jan; 263():127953. PubMed ID: 33297021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]