These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32692780)

  • 1. Capsule networks as recurrent models of grouping and segmentation.
    Doerig A; Schmittwilken L; Sayim B; Manassi M; Herzog MH
    PLoS Comput Biol; 2020 Jul; 16(7):e1008017. PubMed ID: 32692780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crowding reveals fundamental differences in local vs. global processing in humans and machines.
    Doerig A; Bornet A; Choung OH; Herzog MH
    Vision Res; 2020 Feb; 167():39-45. PubMed ID: 31918074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision.
    Spoerer CJ; Kietzmann TC; Mehrer J; Charest I; Kriegeskorte N
    PLoS Comput Biol; 2020 Oct; 16(10):e1008215. PubMed ID: 33006992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth in convolutional neural networks solves scene segmentation.
    Seijdel N; Tsakmakidis N; de Haan EHF; Bohte SM; Scholte HS
    PLoS Comput Biol; 2020 Jul; 16(7):e1008022. PubMed ID: 32706770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Critical Test of Deep Convolutional Neural Networks' Ability to Capture Recurrent Processing in the Brain Using Visual Masking.
    Loke J; Seijdel N; Snoek L; van der Meer M; van de Klundert R; Quispel E; Cappaert N; Scholte HS
    J Cogn Neurosci; 2022 Nov; 34(12):2390-2405. PubMed ID: 36122352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shrinking Bouma's window: How to model crowding in dense displays.
    Bornet A; Doerig A; Herzog MH; Francis G; Van der Burg E
    PLoS Comput Biol; 2021 Jul; 17(7):e1009187. PubMed ID: 34228703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medical Image Segmentation Algorithm Based on Feedback Mechanism CNN.
    An FP; Liu ZW
    Contrast Media Mol Imaging; 2019; 2019():6134942. PubMed ID: 31481851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The patchwork engine: image segmentation from shape symmetries.
    van Tonder GJ; Ejima Y
    Neural Netw; 2000 Apr; 13(3):291-303. PubMed ID: 10937963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.
    Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG
    Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GRUU-Net: Integrated convolutional and gated recurrent neural network for cell segmentation.
    Wollmann T; Gunkel M; Chung I; Erfle H; Rippe K; Rohr K
    Med Image Anal; 2019 Aug; 56():68-79. PubMed ID: 31200289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution.
    Cai Y; Long Y; Han Z; Liu M; Zheng Y; Yang W; Chen L
    BMC Med Inform Decis Mak; 2023 Feb; 23(1):33. PubMed ID: 36788560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image Segmentation Using Deep Learning: A Survey.
    Minaee S; Boykov Y; Porikli F; Plaza A; Kehtarnavaz N; Terzopoulos D
    IEEE Trans Pattern Anal Mach Intell; 2022 Jul; 44(7):3523-3542. PubMed ID: 33596172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology.
    Bouteldja N; Klinkhammer BM; Bülow RD; Droste P; Otten SW; Freifrau von Stillfried S; Moellmann J; Sheehan SM; Korstanje R; Menzel S; Bankhead P; Mietsch M; Drummer C; Lehrke M; Kramann R; Floege J; Boor P; Merhof D
    J Am Soc Nephrol; 2021 Jan; 32(1):52-68. PubMed ID: 33154175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Texture segmentation by genetic programming.
    Song A; Ciesielski V
    Evol Comput; 2008; 16(4):461-81. PubMed ID: 19053495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Classification of Apoptosis in Phase Contrast Microscopy Using Capsule Network.
    Mobiny A; Lu H; Nguyen HV; Roysam B; Varadarajan N
    IEEE Trans Med Imaging; 2020 Jan; 39(1):1-10. PubMed ID: 31135355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
    Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A
    Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrent Connections in the Primate Ventral Visual Stream Mediate a Trade-Off Between Task Performance and Network Size During Core Object Recognition.
    Nayebi A; Sagastuy-Brena J; Bear DM; Kar K; Kubilius J; Ganguli S; Sussillo D; DiCarlo JJ; Yamins DLK
    Neural Comput; 2022 Jul; 34(8):1652-1675. PubMed ID: 35798321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks.
    Souza JC; Bandeira Diniz JO; Ferreira JL; França da Silva GL; Corrêa Silva A; de Paiva AC
    Comput Methods Programs Biomed; 2019 Aug; 177():285-296. PubMed ID: 31319957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.