These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32692922)

  • 1. Asymmetric Two-Layer Porous Membrane for Gas Separation.
    Liu M; Song D; Wang X; Sun C; Jing D
    J Phys Chem Lett; 2020 Aug; 11(15):6359-6363. PubMed ID: 32692922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of CO
    Mahnaee S; López MJ; Alonso JA
    Phys Chem Chem Phys; 2024 Jun; 26(22):15916-15926. PubMed ID: 38805377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-Gated Gas Separation through Porous Graphene.
    Tian Z; Mahurin SM; Dai S; Jiang DE
    Nano Lett; 2017 Mar; 17(3):1802-1807. PubMed ID: 28231000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen purification performance of a nanoporous hexagonal boron nitride membrane: molecular dynamics and first-principle simulations.
    Darvish Ganji M; Dodangeh R
    Phys Chem Chem Phys; 2017 May; 19(19):12032-12044. PubMed ID: 28443917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes.
    Yuan Z; Misra RP; Rajan AG; Strano MS; Blankschtein D
    ACS Nano; 2019 Oct; 13(10):11809-11824. PubMed ID: 31532624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation.
    Zhao J; He G; Huang S; Villalobos LF; Dakhchoune M; Bassas H; Agrawal KV
    Sci Adv; 2019 Jan; 5(1):eaav1851. PubMed ID: 30746475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane.
    Esfandiarpoor S; Fazli M; Ganji MD
    Sci Rep; 2017 Nov; 7(1):16561. PubMed ID: 29185458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation Properties of Porous MoS
    Li Y; Linghu Y; Wu C
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):20096-20102. PubMed ID: 32267680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Chemical Vapor Deposition Synthesis of Porous Single-Layer Graphene Membranes with High Gas Permeances and Selectivities.
    Yuan Z; He G; Faucher S; Kuehne M; Li SX; Blankschtein D; Strano MS
    Adv Mater; 2021 Nov; 33(44):e2104308. PubMed ID: 34510595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of molecular permeation through nanoporous graphene membranes.
    Sun C; Boutilier MS; Au H; Poesio P; Bai B; Karnik R; Hadjiconstantinou NG
    Langmuir; 2014 Jan; 30(2):675-82. PubMed ID: 24364726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethersulfone based MMMs with 2D materials and ionic liquid for CO
    Kamble AR; Patel CM; Murthy ZVP
    J Environ Manage; 2020 May; 262():110256. PubMed ID: 32090882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-facilitated synthesized vertically aligned hexagonal boron nitride nanowalls and their gas adsorption properties.
    Sun X; Li D; Gao W; Yin H
    Nanotechnology; 2021 Feb; 32(6):065601. PubMed ID: 33086196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab Initio Molecular Dynamics Investigation on the Permeation of Sodium and Chloride Ions Through Nanopores in Graphene and Hexagonal Boron Nitride Membranes.
    Dehhaghi Y; Kiakojouri A; Frank I; Nadimi E
    Chemphyschem; 2024 May; ():e202400318. PubMed ID: 38801292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness.
    Ashirov T; Yazaydin AO; Coskun A
    Adv Mater; 2022 Feb; 34(5):e2106785. PubMed ID: 34775644
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Rodriguez A; Schlichting KP; Poulikakos D; Hu M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39701-39710. PubMed ID: 34392678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.
    Jiao S; Xu Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9052-9. PubMed ID: 25868398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of gas permeation through single layer graphene membranes.
    Drahushuk LW; Strano MS
    Langmuir; 2012 Dec; 28(48):16671-8. PubMed ID: 23101879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes.
    Zhang L; Wu C; Ding X; Fang Y; Sun J
    Phys Chem Chem Phys; 2018 Jul; 20(27):18192-18199. PubMed ID: 29741541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.