These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32692922)

  • 21. Influence of chemical functionalization on the CO₂/N₂ separation performance of porous graphene membranes.
    Shan M; Xue Q; Jing N; Ling C; Zhang T; Yan Z; Zheng J
    Nanoscale; 2012 Sep; 4(17):5477-82. PubMed ID: 22850863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation.
    Boutilier MS; Sun C; O'Hern SC; Au H; Hadjiconstantinou NG; Karnik R
    ACS Nano; 2014 Jan; 8(1):841-9. PubMed ID: 24397398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of gas mixtures using a range of zeolite membranes: a molecular-dynamics study.
    Jia W; Murad S
    J Chem Phys; 2005 Jun; 122(23):234708. PubMed ID: 16008474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions.
    Yuan Z; Govind Rajan A; He G; Misra RP; Strano MS; Blankschtein D
    ACS Nano; 2021 Jan; 15(1):1727-1740. PubMed ID: 33439000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separation of CH
    Ghiasi M; Zeinali P; Gholami S; Zahedi M
    J Mol Model; 2021 Jun; 27(7):201. PubMed ID: 34121149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation.
    Tao Y; Xue Q; Liu Z; Shan M; Ling C; Wu T; Li X
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8048-58. PubMed ID: 24621326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation.
    Wang X; Chi C; Zhang K; Qian Y; Gupta KM; Kang Z; Jiang J; Zhao D
    Nat Commun; 2017 Feb; 8():14460. PubMed ID: 28205528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective Molecular Sieving through a Large Graphene Nanopore with Surface Charges.
    Sun C; Zhu S; Liu M; Shen S; Bai B
    J Phys Chem Lett; 2019 Nov; 10(22):7188-7194. PubMed ID: 31682132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-layer graphene membranes by crack-free transfer for gas mixture separation.
    Huang S; Dakhchoune M; Luo W; Oveisi E; He G; Rezaei M; Zhao J; Alexander DTL; Züttel A; Strano MS; Agrawal KV
    Nat Commun; 2018 Jul; 9(1):2632. PubMed ID: 29980683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer-Aided Design of Boron Nitride-Based Membranes with Armchair and Zigzag Nanopores for Efficient Water Desalination.
    Tsukanov AA; Shilko EV
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33233783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultimate permeation across atomically thin porous graphene.
    Celebi K; Buchheim J; Wyss RM; Droudian A; Gasser P; Shorubalko I; Kye JI; Lee C; Park HG
    Science; 2014 Apr; 344(6181):289-92. PubMed ID: 24744372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gas separation using graphene nanosheet: insights from theory and simulation.
    Fatemi SM; Fatemi SJ; Abbasi Z
    J Mol Model; 2020 Oct; 26(11):322. PubMed ID: 33118096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics.
    Liu H; Dai S; Jiang DE
    Nanoscale; 2013 Oct; 5(20):9984-7. PubMed ID: 23990030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Dynamics Simulation of Water Transport Mechanisms through Nanoporous Boron Nitride and Graphene Multilayers.
    Shahbabaei M; Kim D
    J Phys Chem B; 2017 Apr; 121(16):4137-4144. PubMed ID: 28335603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrafast, Stable Ionic and Molecular Sieving through Functionalized Boron Nitride Membranes.
    Chen C; Qin S; Liu D; Wang J; Yang G; Su Y; Zhang L; Cao W; Ma M; Qian Y; Liu Y; Liu JZ; Lei W
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30430-30436. PubMed ID: 31318530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physics behind Water Transport through Nanoporous Boron Nitride and Graphene.
    Garnier L; Szymczyk A; Malfreyt P; Ghoufi A
    J Phys Chem Lett; 2016 Sep; 7(17):3371-6. PubMed ID: 27504857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding water permeation in graphene oxide membranes.
    Wei N; Peng X; Xu Z
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5877-83. PubMed ID: 24669772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Impact of Various Natural Gas Contaminant Exposures on CO
    Nemestóthy N; Bakonyi P; Lajtai-Szabó P; Bélafi-Bakó K
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33142876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AA'-Stacked Trilayer Hexagonal Boron Nitride Membrane for Proton Exchange Membrane Fuel Cells.
    Yoon SI; Seo DJ; Kim G; Kim M; Jung CY; Yoon YG; Joo SH; Kim TY; Shin HS
    ACS Nano; 2018 Nov; 12(11):10764-10771. PubMed ID: 30335961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.