BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32693083)

  • 1. Making Feeding Decisions in the Drosophila Nervous System.
    Miroschnikow A; Schlegel P; Pankratz MJ
    Curr Biol; 2020 Jul; 30(14):R831-R840. PubMed ID: 32693083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a
    Miroschnikow A; Schlegel P; Schoofs A; Hueckesfeld S; Li F; Schneider-Mizell CM; Fetter RD; Truman JW; Cardona A; Pankratz MJ
    Elife; 2018 Dec; 7():. PubMed ID: 30526854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multilevel multimodal circuit enhances action selection in Drosophila.
    Ohyama T; Schneider-Mizell CM; Fetter RD; Aleman JV; Franconville R; Rivera-Alba M; Mensh BD; Branson KM; Simpson JH; Truman JW; Cardona A; Zlatic M
    Nature; 2015 Apr; 520(7549):633-9. PubMed ID: 25896325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.
    Huser A; Rohwedder A; Apostolopoulou AA; Widmann A; Pfitzenmaier JE; Maiolo EM; Selcho M; Pauls D; von Essen A; Gupta T; Sprecher SG; Birman S; Riemensperger T; Stocker RF; Thum AS
    PLoS One; 2012; 7(10):e47518. PubMed ID: 23082175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outputs of radula mechanoafferent neurons in Aplysia are modulated by motor neurons, interneurons, and sensory neurons.
    Rosen SC; Miller MW; Cropper EC; Kupfermann I
    J Neurophysiol; 2000 Mar; 83(3):1621-36. PubMed ID: 10712484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval
    Matsunaga T; Kohsaka H; Nose A
    J Neurosci; 2017 Feb; 37(8):2045-2060. PubMed ID: 28115483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical and genotype-specific mechanosensory responses in Drosophila melanogaster larvae.
    Titlow JS; Rice J; Majeed ZR; Holsopple E; Biecker S; Cooper RL
    Neurosci Res; 2014 Jun; 83():54-63. PubMed ID: 24768745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A subset of interneurons required for Drosophila larval locomotion.
    Yoshikawa S; Long H; Thomas JB
    Mol Cell Neurosci; 2016 Jan; 70():22-9. PubMed ID: 26621406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silencing synaptic communication between random interneurons during Drosophila larval locomotion.
    Iyengar BG; Chou CJ; Vandamme KM; Klose MK; Zhao X; Akhtar-Danesh N; Campos AR; Atwood HL
    Genes Brain Behav; 2011 Nov; 10(8):883-900. PubMed ID: 21895974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent modification of synaptic interactions between sensory and motor nerve cells following discrete lesions in the central nervous system of the leech.
    Jansen JK; Muller KJ; Nicholls JG
    J Physiol; 1974 Oct; 242(2):289-305. PubMed ID: 4376167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitatory amino acid neurotransmission at sensory-motor and interneuronal synapses of Aplysia californica.
    Trudeau LE; Castellucci VF
    J Neurophysiol; 1993 Sep; 70(3):1221-30. PubMed ID: 7901346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential addition of neuronal stem cell temporal cohorts generates a feed-forward circuit in the
    Wang YW; Wreden CC; Levy M; Meng JL; Marshall ZD; MacLean J; Heckscher E
    Elife; 2022 Jun; 11():. PubMed ID: 35723253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.
    Hückesfeld S; Schoofs A; Schlegel P; Miroschnikow A; Pankratz MJ
    PLoS One; 2015; 10(8):e0135011. PubMed ID: 26252658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryonic assembly of a central pattern generator without sensory input.
    Suster ML; Bate M
    Nature; 2002 Mar; 416(6877):174-8. PubMed ID: 11894094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nociceptive interneurons control modular motor pathways to promote escape behavior in
    Burgos A; Honjo K; Ohyama T; Qian CS; Shin GJ; Gohl DM; Silies M; Tracey WD; Zlatic M; Cardona A; Grueber WB
    Elife; 2018 Mar; 7():. PubMed ID: 29528286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of various physiological salines for heart rate, CNS function, and synaptic transmission at neuromuscular junctions in Drosophila melanogaster larvae.
    de Castro C; Titlow J; Majeed ZR; Cooper RL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jan; 200(1):83-92. PubMed ID: 24190421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila.
    Masson JB; Laurent F; Cardona A; Barré C; Skatchkovsky N; Zlatic M; Jovanic T
    PLoS Genet; 2020 Feb; 16(2):e1008589. PubMed ID: 32059010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae.
    Song W; Onishi M; Jan LY; Jan YN
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):5199-204. PubMed ID: 17360325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of sensory experience in functional development of Drosophila motor circuits.
    Fushiki A; Kohsaka H; Nose A
    PLoS One; 2013; 8(4):e62199. PubMed ID: 23620812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in
    Wang Q; Fan H; Li F; Skeeters SS; Krishnamurthy VV; Song Y; Zhang K
    Elife; 2020 Oct; 9():. PubMed ID: 33021199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.