These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
666 related articles for article (PubMed ID: 32693244)
1. Study on the inhibitive effect of Catalpol on diabetic nephropathy. Chen J; Yang Y; Lv Z; Shu A; Du Q; Wang W; Chen Y; Xu H Life Sci; 2020 Sep; 257():118120. PubMed ID: 32693244 [TBL] [Abstract][Full Text] [Related]
2. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway. Li F; Chen Y; Li Y; Huang M; Zhao W Eur J Pharmacol; 2020 Nov; 886():173449. PubMed ID: 32758570 [TBL] [Abstract][Full Text] [Related]
3. Effect of genipin-1-β-d-gentiobioside on diabetic nephropathy in mice by activating AMP-activated protein kinase/silencing information regulator-related enzyme 1/ nuclear factor-κB pathway. Li F; Song L; Chen J; Chen Y; Li Y; Huang M; Zhao W J Pharm Pharmacol; 2021 Aug; 73(9):1201-1211. PubMed ID: 33792721 [TBL] [Abstract][Full Text] [Related]
4. Ameliorative effect of white tea from 50-year-old tree of Camellia sinensis L. (Theaceae) on kidney damage in diabetic mice via SIRT1/AMPK pathway. Xia X; Wang X; Wang H; Lin Z; Shao K; Xu J; Zhao Y J Ethnopharmacol; 2021 May; 272():113919. PubMed ID: 33577915 [TBL] [Abstract][Full Text] [Related]
5. Alleviative effects of 20(R)-Rg3 on HFD/STZ-induced diabetic nephropathy via MAPK/NF-κB signaling pathways in C57BL/6 mice. Li Y; Hou JG; Liu Z; Gong XJ; Hu JN; Wang YP; Liu WC; Lin XH; Wang Z; Li W J Ethnopharmacol; 2021 Mar; 267():113500. PubMed ID: 33091499 [TBL] [Abstract][Full Text] [Related]
6. Integrated network pharmacology and pharmacological investigations to discover the active compounds of Toona sinensis pericarps against diabetic nephropathy. Li H; Wang R; Chen Y; Zhao M; Lan S; Zhao C; Li X; Li W J Ethnopharmacol; 2024 Oct; 333():118441. PubMed ID: 38851471 [TBL] [Abstract][Full Text] [Related]
7. Yishen capsule promotes podocyte autophagy through regulating SIRT1/NF-κB signaling pathway to improve diabetic nephropathy. Liu Y; Liu W; Zhang Z; Hu Y; Zhang X; Sun Y; Lei Q; Sun D; Liu T; Fan Y; Li H; Ding W; Fang J Ren Fail; 2021 Dec; 43(1):128-140. PubMed ID: 33427556 [TBL] [Abstract][Full Text] [Related]
8. Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling. Chen Y; Chen J; Jiang M; Fu Y; Zhu Y; Jiao N; Liu L; Du Q; Wu H; Xu H; Sun J Life Sci; 2020 Jul; 252():117653. PubMed ID: 32277978 [TBL] [Abstract][Full Text] [Related]
9. Harmine alleviated STZ-induced rat diabetic nephropathy: A potential role via regulating AMPK/Nrf2 pathway and deactivating ataxia-telangiectasia mutated (ATM) signaling. Tabaa MME; Tabaa MME; Rashad E; Elballal MS; Elazazy O Int Immunopharmacol; 2024 May; 132():111954. PubMed ID: 38554444 [TBL] [Abstract][Full Text] [Related]
10. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway. Ji X; Li C; Ou Y; Li N; Yuan K; Yang G; Chen X; Yang Z; Liu B; Cheung WW; Wang L; Huang R; Lan T Mol Cell Endocrinol; 2016 Dec; 437():268-279. PubMed ID: 27378149 [TBL] [Abstract][Full Text] [Related]
11. Vitexin, a fenugreek glycoside, ameliorated obesity-induced diabetic nephropathy via modulation of NF-κB/IkBα and AMPK/ACC pathways in mice. Zhou G; Cui J; Xie S; Wan H; Luo Y; Guo G Biosci Biotechnol Biochem; 2021 Apr; 85(5):1183-1193. PubMed ID: 33704405 [TBL] [Abstract][Full Text] [Related]
12. The anti-nephritic activity of a polysaccharide from okra (Abelmoschus esculentus (L.) Moench) via modulation of AMPK-Sirt1-PGC-1α signaling axis mediated anti-oxidative in type 2 diabetes model mice. Liao Z; Zhang J; Wang J; Yan T; Xu F; Wu B; Xiao F; Bi K; Niu J; Jia Y Int J Biol Macromol; 2019 Nov; 140():568-576. PubMed ID: 31442509 [TBL] [Abstract][Full Text] [Related]
13. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Zhu L; Han J; Yuan R; Xue L; Pang W Biol Res; 2018 Mar; 51(1):9. PubMed ID: 29604956 [TBL] [Abstract][Full Text] [Related]
14. Isorhapontigenin ameliorates high glucose-induced podocyte and vascular endothelial cell injuries via mitigating oxidative stress and autophagy through the AMPK/Nrf2 pathway. Tian H; Zheng X; Wang H Int Urol Nephrol; 2023 Feb; 55(2):423-436. PubMed ID: 35960477 [TBL] [Abstract][Full Text] [Related]
15. Sodium butyrate improves renal injury in diabetic nephropathy through AMPK/SIRT1/PGC-1α signaling pathway. Ye K; Zhao Y; Huang W; Zhu Y Sci Rep; 2024 Aug; 14(1):17867. PubMed ID: 39090182 [TBL] [Abstract][Full Text] [Related]
16. Astragalus Polysaccharide Ameliorates Renal Inflammatory Responses in a Diabetic Nephropathy by Suppressing the TLR4/NF-κB Pathway. Guo M; Gao J; Jiang L; Dai Y Drug Des Devel Ther; 2023; 17():2107-2118. PubMed ID: 37489175 [TBL] [Abstract][Full Text] [Related]
17. Alpha-kinase1 promotes tubular injury and interstitial inflammation in diabetic nephropathy by canonical pyroptosis pathway. Cui X; Li Y; Yuan S; Huang Y; Chen X; Han Y; Liu Z; Li Z; Xiao Y; Wang Y; Sun L; Liu H; Zhu X Biol Res; 2023 Feb; 56(1):5. PubMed ID: 36732854 [TBL] [Abstract][Full Text] [Related]
19. Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-κB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Song W; Wei L; Du Y; Wang Y; Jiang S Int Immunopharmacol; 2018 Oct; 63():227-238. PubMed ID: 30107367 [TBL] [Abstract][Full Text] [Related]
20. Catalpol ameliorates endothelial dysfunction and inflammation in diabetic nephropathy via suppression of RAGE/RhoA/ROCK signaling pathway. Shu A; Du Q; Chen J; Gao Y; Zhu Y; Lv G; Lu J; Chen Y; Xu H Chem Biol Interact; 2021 Oct; 348():109625. PubMed ID: 34416245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]