These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 32693593)
1. Studies of Dynamic Binding of Amino Acids to TiO Xue M; Sampath J; Gebhart RN; Haugen HJ; Lyngstadaas SP; Pfaendtner J; Drobny G Langmuir; 2020 Sep; 36(35):10341-10350. PubMed ID: 32693593 [TBL] [Abstract][Full Text] [Related]
2. pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO Ustunol IB; Gonzalez-Pech NI; Grassian VH J Colloid Interface Sci; 2019 Oct; 554():362-375. PubMed ID: 31306947 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic Insight into Nanoparticle Surface Adsorption by Solution NMR Spectroscopy in an Aqueous Gel. Egner TK; Naik P; Nelson NC; Slowing II; Venditti V Angew Chem Int Ed Engl; 2017 Aug; 56(33):9802-9806. PubMed ID: 28640513 [TBL] [Abstract][Full Text] [Related]
4. An In Silico study of TiO Liu S; Meng XY; Perez-Aguilar JM; Zhou R Sci Rep; 2016 Nov; 6():37761. PubMed ID: 27883086 [TBL] [Abstract][Full Text] [Related]
6. Interaction of biomolecules with anatase, rutile and amorphous TiO2 surfaces: A molecular dynamics study. Tarjányi T; Bogár F; Minárovits J; Gajdács M; Tóth Z PLoS One; 2023; 18(9):e0289467. PubMed ID: 37669294 [TBL] [Abstract][Full Text] [Related]
7. The Metal-Oxide Nanoparticle-Aqueous Solution Interface Studied by Liquid-Microjet Photoemission. Ali H; Winter B; Seidel R Acc Chem Res; 2023 Jul; 56(13):1687-1697. PubMed ID: 37310757 [TBL] [Abstract][Full Text] [Related]
8. Water driven adsorption of amino acids on the (101) anatase TiO₂ surface: an ab initio study. Agosta L; Zollo G; Arcangeli C; Buonocore F; Gala F; Celino M Phys Chem Chem Phys; 2015 Jan; 17(3):1556-61. PubMed ID: 25434879 [TBL] [Abstract][Full Text] [Related]
9. Probing exchange kinetics and atomic resolution dynamics in high-molecular-weight complexes using dark-state exchange saturation transfer NMR spectroscopy. Fawzi NL; Ying J; Torchia DA; Clore GM Nat Protoc; 2012 Jul; 7(8):1523-33. PubMed ID: 22814391 [TBL] [Abstract][Full Text] [Related]
10. Canonical, deprotonated, or zwitterionic? II. A computational study on amino acid interaction with the TiO Pantaleone S; Rimola A; Sodupe M Phys Chem Chem Phys; 2020 Aug; 22(29):16862-16876. PubMed ID: 32666992 [TBL] [Abstract][Full Text] [Related]
11. Influence of surface polarity on water dynamics at the water/rutile TiO₂(110) interface. Ohto T; Mishra A; Yoshimune S; Nakamura H; Bonn M; Nagata Y J Phys Condens Matter; 2014 Jun; 26(24):244102. PubMed ID: 24862873 [TBL] [Abstract][Full Text] [Related]
12. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations. Huang L; Gubbins KE; Li L; Lu X Langmuir; 2014 Dec; 30(49):14832-40. PubMed ID: 25423593 [TBL] [Abstract][Full Text] [Related]
13. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces. Schneider J; Ciacchi LC J Chem Theory Comput; 2011 Feb; 7(2):473-84. PubMed ID: 26596167 [TBL] [Abstract][Full Text] [Related]
14. Molecular-Level Understanding of the Influence of Ions and Water on HMGB1 Adsorption Induced by Surface Hydroxylation of Titanium Implants. Ranathunga DTS; Arteaga A; Biguetti CC; Rodrigues DC; Nielsen SO Langmuir; 2021 Aug; 37(33):10100-10114. PubMed ID: 34370950 [TBL] [Abstract][Full Text] [Related]
15. Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides. Sultan AM; Hughes ZE; Walsh TR Langmuir; 2014 Nov; 30(44):13321-9. PubMed ID: 25317483 [TBL] [Abstract][Full Text] [Related]
16. Interaction of KRSR Peptide with Titanium Dioxide Anatase (100) Surface: A Molecular Dynamics Simulation Study. Tarjányi T; Bogár F; Minarovits J; Gajdács M; Tóth Z Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948048 [TBL] [Abstract][Full Text] [Related]
17. Probing the binding modes and dynamics of histidine on fumed silica surfaces by solid-state NMR. Swanson HL; Guo C; Cao M; Addison JB; Holland GP Phys Chem Chem Phys; 2020 Sep; 22(36):20349-20361. PubMed ID: 32901618 [TBL] [Abstract][Full Text] [Related]
18. In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy. Mermut O; Phillips DC; York RL; McCrea KR; Ward RS; Somorjai GA J Am Chem Soc; 2006 Mar; 128(11):3598-607. PubMed ID: 16536533 [TBL] [Abstract][Full Text] [Related]
19. RGD tripeptide onto perfect and grooved rutile surfaces in aqueous solution: adsorption behaviors and dynamics. Chen M; Wu C; Song D; Li K Phys Chem Chem Phys; 2010 Jan; 12(2):406-15. PubMed ID: 20023818 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of arginine-glycine-aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation. Wu C; Chen M; Skelton AA; Cummings PT; Zheng T ACS Appl Mater Interfaces; 2013 Apr; 5(7):2567-79. PubMed ID: 23461392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]