BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32693721)

  • 1. Body shape diversification along the benthic-pelagic axis in marine fishes.
    Friedman ST; Price SA; Corn KA; Larouche O; Martinez CM; Wainwright PC
    Proc Biol Sci; 2020 Jul; 287(1931):20201053. PubMed ID: 32693721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary determinism and convergence associated with water-column transitions in marine fishes.
    Rincon-Sandoval M; Duarte-Ribeiro E; Davis AM; Santaquiteria A; Hughes LC; Baldwin CC; Soto-Torres L; Acero P A; Walker HJ; Carpenter KE; Sheaves M; Ortí G; Arcila D; Betancur-R R
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33396-33403. PubMed ID: 33328271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-Cretaceous bursts of evolution along the benthic-pelagic axis in marine fishes.
    Ribeiro E; Davis AM; Rivero-Vega RA; Ortí G; Betancur-R R
    Proc Biol Sci; 2018 Dec; 285(1893):20182010. PubMed ID: 30963906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent Processes Drive Parallel Evolution in Marine and Freshwater Fishes.
    Friedman ST; Collyer ML; Price SA; Wainwright PC
    Syst Biol; 2022 Oct; 71(6):1319-1330. PubMed ID: 34605882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explosive diversification following a benthic to pelagic shift in freshwater fishes.
    Hollingsworth PR; Simons AM; Fordyce JA; Hulsey CD
    BMC Evol Biol; 2013 Dec; 13():272. PubMed ID: 24341464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilocus phylogeny, divergence times, and a major role for the benthic-to-pelagic axis in the diversification of grunts (Haemulidae).
    Tavera J; Acero P A; Wainwright PC
    Mol Phylogenet Evol; 2018 Apr; 121():212-223. PubMed ID: 29307507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment.
    Lindgren AR; Pankey MS; Hochberg FG; Oakley TH
    BMC Evol Biol; 2012 Jul; 12():129. PubMed ID: 22839506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rise of biting during the Cenozoic fueled reef fish body shape diversification.
    Corn KA; Friedman ST; Burress ED; Martinez CM; Larouche O; Price SA; Wainwright PC
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2119828119. PubMed ID: 35881791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of Phenotypic Evolution Associated with Marine/Freshwater Transitions in Fishes.
    de Brito V; Betancur-R R; Burns MD; Buser TJ; Conway KW; Fontenelle JP; Kolmann MA; McCraney WT; Thacker CE; Bloom DD
    Integr Comp Biol; 2022 Aug; 62(2):406-423. PubMed ID: 35675320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution in an extreme environment: developmental biases and phenotypic integration in the adaptive radiation of antarctic notothenioids.
    Hu Y; Ghigliotti L; Vacchi M; Pisano E; Detrich HW; Albertson RC
    BMC Evol Biol; 2016 Jun; 16(1):142. PubMed ID: 27356756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary patterns of diadromy in fishes: more than a transitional state between marine and freshwater.
    Corush JB
    BMC Evol Biol; 2019 Aug; 19(1):168. PubMed ID: 31412761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The deep sea is a hot spot of fish body shape evolution.
    Martinez CM; Friedman ST; Corn KA; Larouche O; Price SA; Wainwright PC
    Ecol Lett; 2021 Sep; 24(9):1788-1799. PubMed ID: 34058793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal vertebral morphology of bony fishes matches the mechanical demands of different environments.
    Baxter D; Cohen KE; Donatelli CM; Tytell ED
    Ecol Evol; 2022 Nov; 12(11):e9499. PubMed ID: 36415873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological and ecological trait diversity reveal sensitivity of herbivorous fish assemblages to coral reef benthic conditions.
    Pombo-Ayora L; Coker DJ; Carvalho S; Short G; Berumen ML
    Mar Environ Res; 2020 Dec; 162():105102. PubMed ID: 32814268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation.
    Rutschmann S; Matschiner M; Damerau M; Muschick M; Lehmann MF; Hanel R; Salzburger W
    Mol Ecol; 2011 Nov; 20(22):4707-21. PubMed ID: 21951675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic basis of ecologically relevant body shape variation among four genera of cichlid fishes.
    DeLorenzo L; Mathews D; Brandon AA; Joglekar M; Carmona Baez A; Moore EC; Ciccotto PJ; Roberts NB; Roberts RB; Powder KE
    Mol Ecol; 2023 Jul; 32(14):3975-3988. PubMed ID: 37161914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Locomotion Mode on Body Shape Evolution in Teleost Fishes.
    Friedman ST; Price SA; Wainwright PC
    Integr Org Biol; 2021; 3(1):obab016. PubMed ID: 34377942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling the drivers of diversification in an imperiled group of freshwater fishes (Cyprinodontiformes: Goodeidae).
    Foster KL; Piller KR
    BMC Evol Biol; 2018 Jul; 18(1):116. PubMed ID: 30021522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of size on body shape diversification across Indo-Pacific shore fishes.
    Friedman ST; Martinez CM; Price SA; Wainwright PC
    Evolution; 2019 Sep; 73(9):1873-1884. PubMed ID: 31090919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent diversification of a marine genus (Tursiops spp.) tracks habitat preference and environmental change.
    Moura AE; Nielsen SC; Vilstrup JT; Moreno-Mayar JV; Gilbert MT; Gray HW; Natoli A; Möller L; Hoelzel AR
    Syst Biol; 2013 Nov; 62(6):865-77. PubMed ID: 23929779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.