These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 32693743)
1. Latch-based control of energy output in spring actuated systems. Divi S; Ma X; Ilton M; St Pierre R; Eslami B; Patek SN; Bergbreiter S J R Soc Interface; 2020 Jul; 17(168):20200070. PubMed ID: 32693743 [TBL] [Abstract][Full Text] [Related]
2. A Tunable, Simplified Model for Biological Latch Mediated Spring Actuated Systems. Cook A; Pandhigunta K; Acevedo MA; Walker A; Didcock RL; Castro JT; O'Neill D; Acharya R; Bhamla MS; Anderson PSL; Ilton M Integr Org Biol; 2022; 4(1):obac032. PubMed ID: 36060863 [TBL] [Abstract][Full Text] [Related]
3. Snap-jaw morphology is specialized for high-speed power amplification in the Dracula ant, Larabee FJ; Smith AA; Suarez AV R Soc Open Sci; 2018 Dec; 5(12):181447. PubMed ID: 30662749 [TBL] [Abstract][Full Text] [Related]
4. Embodied latch mechanism of the mandible to power at ultra-high speed in the trap-jaw ant Odontomachus kuroiwae. Aonuma H; Naniwa K; Sugimoto Y; Ohkawara K; Kagaya K J Exp Biol; 2023 May; 226(10):. PubMed ID: 37040071 [TBL] [Abstract][Full Text] [Related]
5. Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems. Longo SJ; Cox SM; Azizi E; Ilton M; Olberding JP; St Pierre R; Patek SN J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31399509 [TBL] [Abstract][Full Text] [Related]
6. Spring and latch dynamics can act as control pathways in ultrafast systems. Hyun NP; Olberding JP; De A; Divi S; Liang X; Thomas E; St Pierre R; Steinhardt E; Jorge J; Longo SJ; Cox S; Mendoza E; Sutton GP; Azizi E; Crosby AJ; Bergbreiter S; Wood RJ; Patek SN Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36595244 [TBL] [Abstract][Full Text] [Related]
7. The principles of cascading power limits in small, fast biological and engineered systems. Ilton M; Bhamla MS; Ma X; Cox SM; Fitchett LL; Kim Y; Koh JS; Krishnamurthy D; Kuo CY; Temel FZ; Crosby AJ; Prakash M; Sutton GP; Wood RJ; Azizi E; Bergbreiter S; Patek SN Science; 2018 Apr; 360(6387):. PubMed ID: 29700237 [TBL] [Abstract][Full Text] [Related]
8. Controlling jumps through latches in small jumping robots. Divi S; St Pierre R; Foong HM; Bergbreiter S Bioinspir Biomim; 2023 Sep; 18(6):. PubMed ID: 37683672 [TBL] [Abstract][Full Text] [Related]
9. Muscle fatigue in the latch-mediated spring actuated mandibles of trap-jaw ants. Larabee FJ; Gibson JC; Rivera MD; Anderson PSL; Suarez AV Integr Comp Biol; 2022 Jun; ():. PubMed ID: 35689666 [TBL] [Abstract][Full Text] [Related]
10. Latch-mediated spring actuation (LaMSA): the power of integrated biomechanical systems. Patek SN J Exp Biol; 2023 Apr; 226(Suppl_1):. PubMed ID: 37021687 [TBL] [Abstract][Full Text] [Related]
11. Hurry Up and Get Out of the Way! Exploring the Limits of Muscle-Based Latch Systems for Power Amplification. Abbott EM; Nezwek T; Schmitt D; Sawicki GS Integr Comp Biol; 2019 Dec; 59(6):1546-1558. PubMed ID: 31418784 [TBL] [Abstract][Full Text] [Related]
12. Modeling the Determinants of Mechanical Advantage During Jumping: Consequences for Spring- and Muscle-Driven Movement. Olberding JP; Deban SM; Rosario MV; Azizi E Integr Comp Biol; 2019 Dec; 59(6):1515-1524. PubMed ID: 31397849 [TBL] [Abstract][Full Text] [Related]
13. Why do Large Animals Never Actuate Their Jumps with Latch-Mediated Springs? Because They can Jump Higher Without Them. Sutton GP; Mendoza E; Azizi E; Longo SJ; Olberding JP; Ilton M; Patek SN Integr Comp Biol; 2019 Dec; 59(6):1609-1618. PubMed ID: 31399734 [TBL] [Abstract][Full Text] [Related]
14. Geometric latches enable tuning of ultrafast, spring-propelled movements. Longo SJ; St Pierre R; Bergbreiter S; Cox S; Schelling B; Patek SN J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36606724 [TBL] [Abstract][Full Text] [Related]
15. Design and control of jumping microrobots with torque reversal latches. Skowronski N; Malek Pour M; Singh S; Longo SJ; St Pierre R Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38697139 [TBL] [Abstract][Full Text] [Related]
16. Performance, morphology and control of power-amplified mandibles in the trap-jaw ant Larabee FJ; Gronenberg W; Suarez AV J Exp Biol; 2017 Sep; 220(Pt 17):3062-3071. PubMed ID: 28855320 [TBL] [Abstract][Full Text] [Related]
17. Feed-forward motor control of ultrafast, ballistic movements. Kagaya K; Patek SN J Exp Biol; 2016 Feb; 219(Pt 3):319-33. PubMed ID: 26643091 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear elasticity and damping govern ultrafast dynamics in click beetles. Bolmin O; Socha JJ; Alleyne M; Dunn AC; Fezzaa K; Wissa AA Proc Natl Acad Sci U S A; 2021 Feb; 118(5):. PubMed ID: 33468629 [TBL] [Abstract][Full Text] [Related]
19. The ultrafast snap of a finger is mediated by skin friction. Acharya R; Challita EJ; Ilton M; Saad Bhamla M J R Soc Interface; 2021 Nov; 18(184):20210672. PubMed ID: 34784775 [TBL] [Abstract][Full Text] [Related]
20. Control of high-speed jumps in muscle and spring actuated systems: a comparative study of take-off energetics in bush-crickets (Mecopoda elongata) and locusts (Schistocerca gregaria). Goode CK; Woodrow C; Harrison SL; Deeming DC; Sutton GP J Comp Physiol B; 2023 Dec; 193(6):597-605. PubMed ID: 37857900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]