These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32694560)

  • 1. Structure and distribution of chalky deposits in the Pacific oyster using x-ray computed tomography (CT).
    Banker RMW; Sumner DY
    Sci Rep; 2020 Jul; 10(1):12118. PubMed ID: 32694560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and crystallography of foliated and chalk shell microstructures of the oyster Magallana: the same materials grown under different conditions.
    Checa AG; Harper EM; González-Segura A
    Sci Rep; 2018 May; 8(1):7507. PubMed ID: 29760483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the chalky layer-derived EGF-like domain-containing protein (CgELC) in the pacific oyster, Crassostrea gigas.
    Iwamoto S; Shimizu K; Negishi L; Suzuki N; Nagata K; Suzuki M
    J Struct Biol; 2020 Oct; 212(1):107594. PubMed ID: 32736075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and compositional characterization of the adhesive produced by reef building oysters.
    Alberts EM; Taylor SD; Edwards SL; Sherman DM; Huang CP; Kenny P; Wilker JJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8533-8. PubMed ID: 25843147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Identification study of raw oyster and calcined ostreae concha].
    Shao JJ; Zhong JW; Chen JW; Li X; Cai BC
    Zhong Yao Cai; 2012 Oct; 35(10):1590-4. PubMed ID: 23627121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bending and branching of calcite laths in the foliated microstructure of pectinoidean bivalves occurs at coherent crystal lattice orientation.
    Checa AG; Yáñez-Ávila ME; González-Segura A; Varela-Feria F; Griesshaber E; Schmahl WW
    J Struct Biol; 2019 Mar; 205(3):7-17. PubMed ID: 30576768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amorphous calcium carbonate: A precursor phase for aragonite in shell disease of the pearl oyster.
    Huang J; Liu C; Xie L; Zhang R
    Biochem Biophys Res Commun; 2018 Feb; 497(1):102-107. PubMed ID: 29428728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium carbonate unit realignment under acidification: A potential compensatory mechanism in an edible estuarine oyster.
    Meng Y; Guo Z; Yao H; Yeung KWK; Thiyagarajan V
    Mar Pollut Bull; 2019 Feb; 139():141-149. PubMed ID: 30686412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil.
    Moon DH; Cheong KH; Koutsospyros A; Chang YY; Hyun S; Ok YS; Park JH
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2362-70. PubMed ID: 26411449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New approach for fabrication of folded-structure SiO2 using oyster shell.
    Lee SW; Kang G; Lee KB; Park SB
    Micron; 2009 Oct; 40(7):713-8. PubMed ID: 19502070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly bioavailable nanocalcium from oyster shell for preventing osteoporosis in rats.
    Lee YK; Jung SK; Chang YH; Kwak HS
    Int J Food Sci Nutr; 2017 Dec; 68(8):931-940. PubMed ID: 28359214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ distribution and characterization of the organic content of the oyster shell Crassostrea gigas (Mollusca, Bivalvia).
    Dauphin Y; Ball AD; Castillo-Michel H; Chevallard C; Cuif JP; Farre B; Pouvreau S; Salomé M
    Micron; 2013 Jan; 44():373-83. PubMed ID: 23022314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breaking the long-standing morphological paradigm: Individual prisms in the pearl oyster shell grow perpendicular to the c-axis of calcite.
    Dauphin Y; Zolotoyabko E; Berner A; Lakin E; Rollion-Bard C; Cuif JP; Fratzl P
    J Struct Biol; 2019 Feb; 205(2):121-132. PubMed ID: 30685338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-omic insights into the formation and evolution of a novel shell microstructure in oysters.
    Bai Y; Liu S; Hu Y; Yu H; Kong L; Xu C; Li Q
    BMC Biol; 2023 Sep; 21(1):204. PubMed ID: 37775818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-structured biogenic calcite: a thermal and chemical approach to folia in oyster shell.
    Lee SW; Kim YM; Kim RH; Choi CS
    Micron; 2008 Jun; 39(4):380-6. PubMed ID: 17498963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation.
    Choi CS; Kim YW
    Biomaterials; 2000 Feb; 21(3):213-22. PubMed ID: 10646937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aragonite shells are more ancient than calcite ones in bivalves: new evidence based on omics.
    Wang X; Li L; Zhu Y; Song X; Fang X; Huang R; Que H; Zhang G
    Mol Biol Rep; 2014 Nov; 41(11):7067-71. PubMed ID: 25063580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoride at waste oyster shell surfaces - Role of magnesium.
    Chang HYH; Kuo YL; Liu JC
    Sci Total Environ; 2019 Feb; 652():1331-1338. PubMed ID: 30586818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental correlates of oyster farming in an upwelling system: Implication upon growth, biomass production, shell strength and organic composition.
    Saavedra LM; Bastías M; Mendoza P; Lagos NA; García-Herrera C; Ponce V; Alvarez F; Llanos-Rivera A
    Mar Environ Res; 2024 Jun; 198():106489. PubMed ID: 38640688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical characteristics and morphological effect of complex crossed structure in biomaterials: fracture mechanics and microstructure of chalky layer in oyster shell.
    Lee SW; Jang YN; Ryu KW; Chae SC; Lee YH; Jeon CW
    Micron; 2011 Jan; 42(1):60-70. PubMed ID: 20888246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.