These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 32694637)
1. Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Bae S; An C; Ahn SS; Kim H; Han K; Kim SW; Park JE; Kim HS; Lee SK Sci Rep; 2020 Jul; 10(1):12110. PubMed ID: 32694637 [TBL] [Abstract][Full Text] [Related]
3. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation. Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of supratentorial single brain metastasis and glioblastoma by using peri-enhancing oedema region-derived radiomic features and multiple classifiers. Dong F; Li Q; Jiang B; Zhu X; Zeng Q; Huang P; Chen S; Zhang M Eur Radiol; 2020 May; 30(5):3015-3022. PubMed ID: 32006166 [TBL] [Abstract][Full Text] [Related]
5. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Kang D; Park JE; Kim YH; Kim JH; Oh JY; Kim J; Kim Y; Kim ST; Kim HS Neuro Oncol; 2018 Aug; 20(9):1251-1261. PubMed ID: 29438500 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Qian Z; Li Y; Wang Y; Li L; Li R; Wang K; Li S; Tang K; Zhang C; Fan X; Chen B; Li W Cancer Lett; 2019 Jun; 451():128-135. PubMed ID: 30878526 [TBL] [Abstract][Full Text] [Related]
7. Fully automated radiomics-based machine learning models for multiclass classification of single brain tumors: Glioblastoma, lymphoma, and metastasis. Joo B; Ahn SS; An C; Han K; Choi D; Kim H; Park JE; Kim HS; Lee SK J Neuroradiol; 2023 Jun; 50(4):388-395. PubMed ID: 36370829 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of a Deep Learning-Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images. Shin I; Kim H; Ahn SS; Sohn B; Bae S; Park JE; Kim HS; Lee SK AJNR Am J Neuroradiol; 2021 May; 42(5):838-844. PubMed ID: 33737268 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of a multi-modality fusion deep learning model for differentiating glioblastoma from solitary brain metastases. Shen S; Li C; Fan Y; Lu S; Yan Z; Liu H; Zhou H; Zhang Z Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 49(1):58-67. PubMed ID: 38615167 [TBL] [Abstract][Full Text] [Related]
10. High-performance presurgical differentiation of glioblastoma and metastasis by means of multiparametric neurite orientation dispersion and density imaging (NODDI) radiomics. Bai J; He M; Gao E; Yang G; Zhang C; Yang H; Dong J; Ma X; Gao Y; Zhang H; Yan X; Zhang Y; Cheng J; Zhao G Eur Radiol; 2024 Oct; 34(10):6616-6628. PubMed ID: 38485749 [TBL] [Abstract][Full Text] [Related]
11. Distinguishing brain abscess from necrotic glioblastoma using MRI-based intranodular radiomic features and peritumoral edema/tumor volume ratio. Xiao D; Wang J; Wang X; Fu P; Zhao H; Yan P; Jiang X J Integr Neurosci; 2021 Sep; 20(3):623-634. PubMed ID: 34645095 [TBL] [Abstract][Full Text] [Related]
12. Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer. Ahn SJ; Kwon H; Yang JJ; Park M; Cha YJ; Suh SH; Lee JM Sci Rep; 2020 Jun; 10(1):8905. PubMed ID: 32483122 [TBL] [Abstract][Full Text] [Related]
13. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach. Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238 [TBL] [Abstract][Full Text] [Related]
14. A radiomics-based model to differentiate glioblastoma from solitary brain metastases. Su CQ; Chen XT; Duan SF; Zhang JX; You YP; Lu SS; Hong XN Clin Radiol; 2021 Aug; 76(8):629.e11-629.e18. PubMed ID: 34092362 [TBL] [Abstract][Full Text] [Related]
15. Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Yun J; Park JE; Lee H; Ham S; Kim N; Kim HS Sci Rep; 2019 Apr; 9(1):5746. PubMed ID: 30952930 [TBL] [Abstract][Full Text] [Related]
16. Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time. Liao X; Cai B; Tian B; Luo Y; Song W; Li Y J Cell Mol Med; 2019 Jun; 23(6):4375-4385. PubMed ID: 31001929 [TBL] [Abstract][Full Text] [Related]
17. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma. Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598 [TBL] [Abstract][Full Text] [Related]
18. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517 [TBL] [Abstract][Full Text] [Related]
19. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. Artzi M; Bressler I; Ben Bashat D J Magn Reson Imaging; 2019 Aug; 50(2):519-528. PubMed ID: 30635952 [TBL] [Abstract][Full Text] [Related]
20. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]