BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 32695398)

  • 1. Inactivating mutations in genes encoding for components of the BAF/PBAF complex and immune-checkpoint inhibitor outcome.
    Courtet K; Laizet Y; Lucchesi C; Bessede A; Italiano A
    Biomark Res; 2020; 8():26. PubMed ID: 32695398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SWI/SNF complex gene variations are associated with a higher tumor mutational burden and a better response to immune checkpoint inhibitor treatment: a pan-cancer analysis of next-generation sequencing data corresponding to 4591 cases.
    Li Y; Yang X; Zhu W; Xu Y; Ma J; He C; Wang F
    Cancer Cell Int; 2022 Nov; 22(1):347. PubMed ID: 36371186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMARCA4 and Other SWItch/Sucrose NonFermentable Family Genomic Alterations in NSCLC: Clinicopathologic Characteristics and Outcomes to Immune Checkpoint Inhibition.
    Alessi JV; Ricciuti B; Spurr LF; Gupta H; Li YY; Glass C; Nishino M; Cherniack AD; Lindsay J; Sharma B; Felt KD; Rodig SJ; Cheng ML; Sholl LM; Awad MM
    J Thorac Oncol; 2021 Jul; 16(7):1176-1187. PubMed ID: 33845210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer.
    Hodges C; Kirkland JG; Crabtree GR
    Cold Spring Harb Perspect Med; 2016 Aug; 6(8):. PubMed ID: 27413115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian SWI/SNF Complex Genomic Alterations and Immune Checkpoint Blockade in Solid Tumors.
    Abou Alaiwi S; Nassar AH; Xie W; Bakouny Z; Berchuck JE; Braun DA; Baca SC; Nuzzo PV; Flippot R; Mouhieddine TH; Spurr LF; Li YY; Li T; Flaifel A; Steinharter JA; Margolis CA; Vokes NI; Du H; Shukla SA; Cherniack AD; Sonpavde G; Haddad RI; Awad MM; Giannakis M; Hodi FS; Liu XS; Signoretti S; Kadoch C; Freedman ML; Kwiatkowski DJ; Van Allen EM; Choueiri TK
    Cancer Immunol Res; 2020 Aug; 8(8):1075-1084. PubMed ID: 32321774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARID2 Deficiency Correlates with the Response to Immune Checkpoint Blockade in Melanoma.
    Fukumoto T; Lin J; Fatkhutdinov N; Liu P; Somasundaram R; Herlyn M; Zhang R; Nishigori C
    J Invest Dermatol; 2021 Jun; 141(6):1564-1572.e4. PubMed ID: 33333124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-small cell lung cancer with loss of expression of the SWI/SNF complex is associated with aggressive clinicopathological features, PD-L1-positive status, and high tumor mutation burden.
    Naito T; Udagawa H; Umemura S; Sakai T; Zenke Y; Kirita K; Matsumoto S; Yoh K; Niho S; Tsuboi M; Ishii G; Goto K
    Lung Cancer; 2019 Dec; 138():35-42. PubMed ID: 31630044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterozygosity for ARID2 loss-of-function mutations in individuals with a Coffin-Siris syndrome-like phenotype.
    Bramswig NC; Caluseriu O; Lüdecke HJ; Bolduc FV; Noel NC; Wieland T; Surowy HM; Christen HJ; Engels H; Strom TM; Wieczorek D
    Hum Genet; 2017 Mar; 136(3):297-305. PubMed ID: 28124119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered BAF occupancy and transcription factor dynamics in PBAF-deficient melanoma.
    Carcamo S; Nguyen CB; Grossi E; Filipescu D; Alpsoy A; Dhiman A; Sun D; Narang S; Imig J; Martin TC; Parsons R; Aifantis I; Tsirigos A; Aguirre-Ghiso JA; Dykhuizen EC; Hasson D; Bernstein E
    Cell Rep; 2022 Apr; 39(1):110637. PubMed ID: 35385731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence of SWI/SNF genomic alterations in cancer and association with the response to immune checkpoint inhibitors: A systematic review and meta-analysis.
    Wang N; Qin Y; Du F; Wang X; Song C
    Gene; 2022 Aug; 834():146638. PubMed ID: 35680019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of function of SWI/SNF chromatin remodeling genes leads to genome instability of human lung cancer.
    Huang HT; Chen SM; Pan LB; Yao J; Ma HT
    Oncol Rep; 2015 Jan; 33(1):283-91. PubMed ID: 25370573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coffin-Siris syndrome and the BAF complex: genotype-phenotype study in 63 patients.
    Santen GW; Aten E; Vulto-van Silfhout AT; Pottinger C; van Bon BW; van Minderhout IJ; Snowdowne R; van der Lans CA; Boogaard M; Linssen MM; Vijfhuizen L; van der Wielen MJ; Vollebregt MJ; ; Breuning MH; Kriek M; van Haeringen A; den Dunnen JT; Hoischen A; Clayton-Smith J; de Vries BB; Hennekam RC; van Belzen MJ
    Hum Mutat; 2013 Nov; 34(11):1519-28. PubMed ID: 23929686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational Landscapes and Phenotypic Spectrum of SWI/SNF-Related Intellectual Disability Disorders.
    Bögershausen N; Wollnik B
    Front Mol Neurosci; 2018; 11():252. PubMed ID: 30123105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coffin-Siris syndrome and related disorders involving components of the BAF (mSWI/SNF) complex: historical review and recent advances using next generation sequencing.
    Kosho T; Miyake N; Carey JC
    Am J Med Genet C Semin Med Genet; 2014 Sep; 166C(3):241-51. PubMed ID: 25169878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational landscape of SWI/SNF complex genes reveal correlation to predictive biomarkers for immunotherapy sensitivity in lung adenocarcinoma patients.
    Xu H; Chen HC; Yang L; Yang G; Liang L; Yang Y; Tang H; Bao H; Wu X; Shao Y; An G; Wang Y
    ESMO Open; 2023 Jun; 8(3):101585. PubMed ID: 37327699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ARID2 Chromatin Remodeler in Hepatocellular Carcinoma.
    Loesch R; Chenane L; Colnot S
    Cells; 2020 Sep; 9(10):. PubMed ID: 32977645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequent co-inactivation of the SWI/SNF subunits SMARCB1, SMARCA2 and PBRM1 in malignant rhabdoid tumours.
    Rao Q; Xia QY; Wang ZY; Li L; Shen Q; Shi SS; Wang X; Liu B; Wang YF; Shi QL; Ma HH; Lu ZF; He Y; Zhang RS; Yu B; Zhou XJ
    Histopathology; 2015 Jul; 67(1):121-9. PubMed ID: 25496315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotype-phenotype correlation of Coffin-Siris syndrome caused by mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A.
    Kosho T; Okamoto N;
    Am J Med Genet C Semin Med Genet; 2014 Sep; 166C(3):262-75. PubMed ID: 25168959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of the SWI/SNF-ATPase subunit members SMARCF1 (ARID1A), SMARCA2 (BRM), SMARCA4 (BRG1) and SMARCB1 (INI1) in oesophageal adenocarcinoma.
    Schallenberg S; Bork J; Essakly A; Alakus H; Buettner R; Hillmer AM; Bruns C; Schroeder W; Zander T; Loeser H; Gebauer F; Quaas A
    BMC Cancer; 2020 Jan; 20(1):12. PubMed ID: 31906887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pathological and molecular features of malignancies underlined by BAF complexes inactivation].
    Le Quang M; Ranchère-Vince D; Le Loarer F
    Ann Pathol; 2019 Dec; 39(6):399-413. PubMed ID: 31255411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.