These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32695754)

  • 1. Construction of a Stable and Temperature-Responsive Yeast Cell Factory for Crocetin Biosynthesis Using CRISPR-Cas9.
    Liu T; Dong C; Qi M; Zhang B; Huang L; Xu Z; Lian J
    Front Bioeng Biotechnol; 2020; 8():653. PubMed ID: 32695754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae.
    Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y
    Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crocetin Overproduction in Engineered
    Song T; Wu N; Wang C; Wang Y; Chai F; Ding M; Li X; Yao M; Xiao W; Yuan Y
    Front Bioeng Biotechnol; 2020; 8():578005. PubMed ID: 33015027
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Liang N; Yao MD; Wang Y; Liu J; Feng L; Wang ZM; Li XY; Xiao WH; Yuan YJ
    J Agric Food Chem; 2021 Oct; 69(39):11626-11636. PubMed ID: 34554747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.
    Lian J; Bao Z; Hu S; Zhao H
    Biotechnol Bioeng; 2018 Jun; 115(6):1630-1635. PubMed ID: 29460422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex Genome Engineering Methods for Yeast Cell Factory Development.
    Malcı K; Walls LE; Rios-Solis L
    Front Bioeng Biotechnol; 2020; 8():589468. PubMed ID: 33195154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.
    Vanegas KG; Lehka BJ; Mortensen UH
    Microb Cell Fact; 2017 Feb; 16(1):25. PubMed ID: 28179021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae.
    López J; Essus K; Kim IK; Pereira R; Herzog J; Siewers V; Nielsen J; Agosin E
    Microb Cell Fact; 2015 Jun; 14():84. PubMed ID: 26063466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.
    Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains.
    Roggenkamp E; Giersch RM; Wedeman E; Eaton M; Turnquist E; Schrock MN; Alkotami L; Jirakittisonthon T; Schluter-Pascua SE; Bayne GH; Wasko C; Halloran M; Finnigan GC
    Front Microbiol; 2017; 8():1773. PubMed ID: 28979241
    [No Abstract]   [Full Text] [Related]  

  • 12. PCR & Go: A Pre-installed Expression Chassis for Facile Integration of Multi-Gene Biosynthetic Pathways.
    Qi M; Zhang B; Jiang L; Xu S; Dong C; Du YL; Zhou Z; Huang L; Xu Z; Lian J
    Front Bioeng Biotechnol; 2020; 8():613771. PubMed ID: 33520963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration.
    Lian J; Jin R; Zhao H
    Biotechnol Bioeng; 2016 Nov; 113(11):2462-73. PubMed ID: 27159405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexed CRISPR-Cas9-Based Genome Editing of
    Otoupal PB; Ito M; Arkin AP; Magnuson JK; Gladden JM; Skerker JM
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Engineering of
    Gao HY; Zhao H; Hu TY; Jiang ZQ; Xia M; Zhang YF; Lu Y; Liu Y; Yin Y; Chen XC; Luo YF; Zhou JW; Wang JD; Gao J; Gao W; Huang LQ
    Front Bioeng Biotechnol; 2022; 10():805429. PubMed ID: 35198543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a Yeast Platform Strain for an Enhanced Taxadiene Biosynthesis by CRISPR/Cas9.
    Utomo JC; Chaves FC; Bauchart P; Martin VJJ; Ro DK
    Metabolites; 2021 Mar; 11(3):. PubMed ID: 33802586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch.
    Zhou P; Xie W; Yao Z; Zhu Y; Ye L; Yu H
    Biotechnol Bioeng; 2018 May; 115(5):1321-1330. PubMed ID: 29315481
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Huang Y; Jiang D; Ren G; Yin Y; Sun Y; Liu T; Liu C
    Front Bioeng Biotechnol; 2021; 9():709120. PubMed ID: 34888299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.