These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32695754)

  • 21. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis.
    Baek K; Yu J; Jeong J; Sim SJ; Bae S; Jin E
    Biotechnol Bioeng; 2018 Mar; 115(3):719-728. PubMed ID: 29150930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.
    Mans R; van Rossum HM; Wijsman M; Backx A; Kuijpers NG; van den Broek M; Daran-Lapujade P; Pronk JT; van Maris AJ; Daran JM
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25743786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High production of valencene in Saccharomyces cerevisiae through metabolic engineering.
    Chen H; Zhu C; Zhu M; Xiong J; Ma H; Zhuo M; Li S
    Microb Cell Fact; 2019 Nov; 18(1):195. PubMed ID: 31699116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preloading budding yeast with all-in-one CRISPR/Cas9 vectors for easy and high-efficient genome editing.
    Degreif D; Kremenovic M; Geiger T; Bertl A
    J Biol Methods; 2018; 5(3):e98. PubMed ID: 31453248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer.
    Salazar-Cerezo S; Kun RS; de Vries RP; Garrigues S
    Enzyme Microb Technol; 2020 Feb; 133():109463. PubMed ID: 31874686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic modification of the carotenoid pathway in the red yeast Xanthophyllomyces dendrorhous: Engineering of a high-yield zeaxanthin strain.
    Breitenbach J; Pollmann H; Sandmann G
    J Biotechnol; 2019 Jan; 289():112-117. PubMed ID: 30496776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae.
    Jakočiūnas T; Rajkumar AS; Zhang J; Arsovska D; Rodriguez A; Jendresen CB; Skjødt ML; Nielsen AT; Borodina I; Jensen MK; Keasling JD
    ACS Synth Biol; 2015 Nov; 4(11):1226-34. PubMed ID: 25781611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt.
    Zhou P; Ye L; Xie W; Lv X; Yu H
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8419-28. PubMed ID: 26156241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast.
    Kang HS; Charlop-Powers Z; Brady SF
    ACS Synth Biol; 2016 Sep; 5(9):1002-10. PubMed ID: 27197732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wicket: A Versatile Tool for the Integration and Optimization of Exogenous Pathways in Saccharomyces cerevisiae.
    Hou S; Qin Q; Dai J
    ACS Synth Biol; 2018 Mar; 7(3):782-788. PubMed ID: 29474063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
    EauClaire SF; Webb CJ
    Yeast; 2019 Oct; 36(10):607-615. PubMed ID: 31301239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing.
    Li X; Wang Y; Chen S; Tian H; Fu D; Zhu B; Luo Y; Zhu H
    Front Plant Sci; 2018; 9():559. PubMed ID: 29755497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A High-throughput workflow for CRISPR/Cas9 mediated combinatorial promoter replacements and phenotype characterization in yeast.
    Kuivanen J; Holmström S; Lehtinen B; Penttilä M; Jäntti J
    Biotechnol J; 2018 May; ():e1700593. PubMed ID: 29729128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
    Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H
    Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide prediction of CRISPR/Cas9 targets in Kluyveromyces marxianus and its application to obtain a stable haploid strain.
    Lee MH; Lin JJ; Lin YJ; Chang JJ; Ke HM; Fan WL; Wang TY; Li WH
    Sci Rep; 2018 May; 8(1):7305. PubMed ID: 29743485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.