BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 32696367)

  • 1. Predicting Conformational Properties of Intrinsically Disordered Proteins from Sequence.
    Ruff KM
    Methods Mol Biol; 2020; 2141():347-389. PubMed ID: 32696367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Sequence Composition, Patterning and Hydrodynamics on the Conformation and Dynamics of Intrinsically Disordered Proteins.
    Vovk A; Zilman A
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational response to charge clustering in synthetic intrinsically disordered proteins.
    Tedeschi G; Salladini E; Santambrogio C; Grandori R; Longhi S; Brocca S
    Biochim Biophys Acta Gen Subj; 2018 Oct; 1862(10):2204-2214. PubMed ID: 30025858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues.
    Das RK; Pappu RV
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13392-7. PubMed ID: 23901099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of Charged Residues Affects the Average Size and Shape of Intrinsically Disordered Proteins.
    Bianchi G; Mangiagalli M; Barbiroli A; Longhi S; Grandori R; Santambrogio C; Brocca S
    Biomolecules; 2022 Apr; 12(4):. PubMed ID: 35454150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins.
    Zheng W; Dignon G; Brown M; Kim YC; Mittal J
    J Phys Chem Lett; 2020 May; 11(9):3408-3415. PubMed ID: 32227994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analytical theory to describe sequence-specific inter-residue distance profiles for polyampholytes and intrinsically disordered proteins.
    Huihui J; Ghosh K
    J Chem Phys; 2020 Apr; 152(16):161102. PubMed ID: 32357776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Ensembles of Intrinsically Disordered Proteins at Atomic Resolution in Molecular Dynamics Simulations.
    Pietrek LM; Stelzl LS; Hummer G
    J Chem Theory Comput; 2020 Jan; 16(1):725-737. PubMed ID: 31809054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic α helix propensities compact hydrodynamic radii in intrinsically disordered proteins.
    English LR; Tilton EC; Ricard BJ; Whitten ST
    Proteins; 2017 Feb; 85(2):296-311. PubMed ID: 27936491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence Effects on Size, Shape, and Structural Heterogeneity in Intrinsically Disordered Proteins.
    Baul U; Chakraborty D; Mugnai ML; Straub JE; Thirumalai D
    J Phys Chem B; 2019 Apr; 123(16):3462-3474. PubMed ID: 30913885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins.
    Mao AH; Crick SL; Vitalis A; Chicoine CL; Pappu RV
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8183-8. PubMed ID: 20404210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-to-Conformation Relationships of Disordered Regions Tethered to Folded Domains of Proteins.
    Mittal A; Holehouse AS; Cohan MC; Pappu RV
    J Mol Biol; 2018 Aug; 430(16):2403-2421. PubMed ID: 29763584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computing, Analyzing, and Comparing the Radius of Gyration and Hydrodynamic Radius in Conformational Ensembles of Intrinsically Disordered Proteins.
    Ahmed MC; Crehuet R; Lindorff-Larsen K
    Methods Mol Biol; 2020; 2141():429-445. PubMed ID: 32696370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous Switching among Conformational Ensembles in Intrinsically Disordered Proteins.
    Choi UB; Sanabria H; Smirnova T; Bowen ME; Weninger KR
    Biomolecules; 2019 Mar; 9(3):. PubMed ID: 30909517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realistic Ensemble Models of Intrinsically Disordered Proteins Using a Structure-Encoding Coil Database.
    Estaña A; Sibille N; Delaforge E; Vaisset M; Cortés J; Bernadó P
    Structure; 2019 Feb; 27(2):381-391.e2. PubMed ID: 30554840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins.
    Holehouse AS; Das RK; Ahad JN; Richardson MO; Pappu RV
    Biophys J; 2017 Jan; 112(1):16-21. PubMed ID: 28076807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How multisite phosphorylation impacts the conformations of intrinsically disordered proteins.
    Jin F; Gräter F
    PLoS Comput Biol; 2021 May; 17(5):e1008939. PubMed ID: 33945530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins.
    Beveridge R; Migas LG; Das RK; Pappu RV; Kriwacki RW; Barran PE
    J Am Chem Soc; 2019 Mar; 141(12):4908-4918. PubMed ID: 30823702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET.
    Gomes GW; Krzeminski M; Namini A; Martin EW; Mittag T; Head-Gordon T; Forman-Kay JD; Gradinaru CC
    J Am Chem Soc; 2020 Sep; 142(37):15697-15710. PubMed ID: 32840111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.