BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32696375)

  • 1. Determining the Protective Activity of IDPs Under Partial Dehydration and Freeze-Thaw Conditions.
    Rendón-Luna DF; Romero-Pérez PS; Cuevas-Velazquez CL; Reyes JL; Covarrubias AA
    Methods Mol Biol; 2020; 2141():519-528. PubMed ID: 32696375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The N-Terminal Region of Soybean PM1 Protein Protects Liposomes during Freeze-Thaw.
    Chen L; Sun Y; Liu Y; Zou Y; Huang J; Zheng Y; Liu G
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32756462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.
    Popova AV; Rausch S; Hundertmark M; Gibon Y; Hincha DK
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1517-25. PubMed ID: 25988244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants.
    Cuevas-Velazquez CL; Reyes JL; Covarrubias AA
    Plant Signal Behav; 2017 Jul; 12(7):e1343777. PubMed ID: 28650260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family.
    Liu Y; Yang M; Cheng H; Sun N; Liu S; Li S; Wang Y; Zheng Y; Uversky VN
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1291-1303. PubMed ID: 28867216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Functional Insights into the Cryoprotection of Membranes by the Intrinsically Disordered Dehydrins.
    Clarke MW; Boddington KF; Warnica JM; Atkinson J; McKenna S; Madge J; Barker CH; Graether SP
    J Biol Chem; 2015 Nov; 290(45):26900-26913. PubMed ID: 26370084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsically Disordered Proteins as Important Players during Desiccation Stress of Soybean Radicles.
    Liu Y; Wu J; Sun N; Tu C; Shi X; Cheng H; Liu S; Li S; Wang Y; Zheng Y; Uversky VN
    J Proteome Res; 2017 Jul; 16(7):2393-2409. PubMed ID: 28525284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural properties and enzyme stabilization function of the intrinsically disordered LEA_4 protein TdLEA3 from wheat.
    Koubaa S; Bremer A; Hincha DK; Brini F
    Sci Rep; 2019 Mar; 9(1):3720. PubMed ID: 30842512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a novel LEA protein involved in freezing tolerance in wheat.
    Sasaki K; Christov NK; Tsuda S; Imai R
    Plant Cell Physiol; 2014 Jan; 55(1):136-47. PubMed ID: 24265272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes.
    Bremer A; Wolff M; Thalhammer A; Hincha DK
    FEBS J; 2017 Mar; 284(6):919-936. PubMed ID: 28109185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Late Embryogenesis Abundant Proteins Contribute to the Resistance of Toxoplasma gondii Oocysts against Environmental Stresses.
    Arranz-Solís D; Warschkau D; Fabian BT; Seeber F; Saeij JPJ
    mBio; 2023 Apr; 14(2):e0286822. PubMed ID: 36809045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential adsorption to air-water interfaces: a novel cryoprotective mechanism for LEA proteins.
    Yuen F; Watson M; Barker R; Grillo I; Heenan RK; Tunnacliffe A; Routh AF
    Biochem J; 2019 Apr; 476(7):1121-1135. PubMed ID: 30898848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance.
    Hincha DK; Thalhammer A
    Biochem Soc Trans; 2012 Oct; 40(5):1000-3. PubMed ID: 22988854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Functions of late embryogenesis abundant proteins in desiccation-tolerance of organisms: a review].
    Liu Y; Liu G; Li R; Zou Y; Zheng Y
    Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):569-75. PubMed ID: 20684298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target enzymes are stabilized by AfrLEA6 and a gain of α-helix coincides with protection by a group 3 LEA protein during incremental drying.
    LeBlanc BM; Hand SC
    Biochim Biophys Acta Proteins Proteom; 2021 Jun; 1869(6):140642. PubMed ID: 33647452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Late Embryogenesis Abundant (LEA) proteins confer water stress tolerance to mammalian somatic cells.
    Czernik M; Fidanza A; Luongo FP; Valbonetti L; Scapolo PA; Patrizio P; Loi P
    Cryobiology; 2020 Feb; 92():189-196. PubMed ID: 31952948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins.
    Boucher V; Buitink J; Lin X; Boudet J; Hoekstra FA; Hundertmark M; Renard D; Leprince O
    Plant Cell Environ; 2010 Mar; 33(3):418-30. PubMed ID: 20002332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Cryoprotective Activity in Human Genome-Derived Intrinsically Disordered Proteins.
    Matsuo N; Goda N; Shimizu K; Fukuchi S; Ota M; Hiroaki H
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29385704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence composition versus sequence order in the cryoprotective function of an intrinsically disordered stress-response protein.
    Palmer SR; De Villa R; Graether SP
    Protein Sci; 2019 Aug; 28(8):1448-1459. PubMed ID: 31102309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The in vitro structure and functions of the disordered late embryogenesis abundant three proteins.
    Singh KK; Graether SP
    Protein Sci; 2021 Mar; 30(3):678-692. PubMed ID: 33474748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.