These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32696377)

  • 1. Probing IDP Interactions with Membranes by Fluorescence Spectroscopy.
    Acosta D; Das T; Eliezer D
    Methods Mol Biol; 2020; 2141():555-567. PubMed ID: 32696377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of IDPs with Membranes Using Dark-State Exchange NMR Spectroscopy.
    Das T; Acosta D; Eliezer D
    Methods Mol Biol; 2020; 2141():585-608. PubMed ID: 32696379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for Investigating the Interactions Between Intrinsically Disordered Proteins and Membranes by Neutron Reflectometry.
    Luchini A; Arleth L
    Methods Mol Biol; 2020; 2141():569-584. PubMed ID: 32696378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring Interactions Between Tau and Aggregation Inducers with Single-Molecule Förster Resonance Energy Transfer.
    Wickramasinghe SP; Rhoades E
    Methods Mol Biol; 2020; 2141():755-775. PubMed ID: 32696388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR Meets Tau: Insights into Its Function and Pathology.
    Lippens G; Landrieu I; Smet C; Huvent I; Gandhi NS; Gigant B; Despres C; Qi H; Lopez J
    Biomolecules; 2016 Jun; 6(2):. PubMed ID: 27338491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats.
    Georgieva ER; Xiao S; Borbat PP; Freed JH; Eliezer D
    Biophys J; 2014 Sep; 107(6):1441-52. PubMed ID: 25229151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring IDP-Ligand Interactions: tau K18 as A Test Case.
    Vagrys D; Davidson J; Chen I; Hubbard RE; Davis B
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32722166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane interactions of intrinsically disordered proteins: The example of alpha-synuclein.
    Das T; Eliezer D
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):879-889. PubMed ID: 31096049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A functional role for intrinsic disorder in the tau-tubulin complex.
    Melo AM; Coraor J; Alpha-Cobb G; Elbaum-Garfinkle S; Nath A; Rhoades E
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14336-14341. PubMed ID: 27911791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Cell NMR Spectroscopy of Intrinsically Disordered Proteins.
    Sciolino N; Burz DS; Shekhtman A
    Proteomics; 2019 Mar; 19(6):e1800055. PubMed ID: 30489014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations.
    Nguyen PH; Derreumaux P
    Biophys Chem; 2020 Sep; 264():106421. PubMed ID: 32623047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discerning Dynamic Signatures of Membrane-Bound α-Synuclein Using Site-Specific Fluorescence Depolarization Kinetics.
    Bhasne K; Jain N; Karnawat R; Arya S; Majumdar A; Singh A; Mukhopadhyay S
    J Phys Chem B; 2020 Feb; 124(5):708-717. PubMed ID: 31917569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Flexibility of Tau in Its Interaction with Microtubules as Viewed by Site-Directed Spin Labeling EPR Spectroscopy.
    Martinho M; Allegro D; Etienne E; Lohberger C; Bonucci A; Belle V; Barbier P
    Methods Mol Biol; 2024; 2754():55-75. PubMed ID: 38512660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease-Associated Tau Phosphorylation Hinders Tubulin Assembly within Tau Condensates.
    Savastano A; Flores D; Kadavath H; Biernat J; Mandelkow E; Zweckstetter M
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):726-730. PubMed ID: 33017094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Binding of Small Molecules to Intrinsically Disordered Proteins.
    Dobrev VS; Fred LM; Gerhart KP; Metallo SJ
    Methods Enzymol; 2018; 611():677-702. PubMed ID: 30471704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining Binding Kinetics of Intrinsically Disordered Proteins by NMR Spectroscopy.
    Yang K; Arai M; Wright PE
    Methods Mol Biol; 2020; 2141():663-681. PubMed ID: 32696383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.
    Joshi P; Chia S; Habchi J; Knowles TP; Dobson CM; Vendruscolo M
    ACS Comb Sci; 2016 Mar; 18(3):144-53. PubMed ID: 26923286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary structures transition of tau protein with intrinsically disordered proteins specific force field.
    Dan A; Chen HF
    Chem Biol Drug Des; 2019 Mar; 93(3):242-253. PubMed ID: 30259679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein.
    Żerko S; Byrski P; Włodarczyk-Pruszyński P; Górka M; Ledolter K; Masliah E; Konrat R; Koźmiński W
    J Biomol NMR; 2016 Aug; 65(3-4):193-203. PubMed ID: 27430223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.