These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 32696384)

  • 21. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior.
    Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs.
    Lin Y; Currie SL; Rosen MK
    J Biol Chem; 2017 Nov; 292(46):19110-19120. PubMed ID: 28924037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid-Liquid Phase Separation.
    Garaizar A; Sanchez-Burgos I; Collepardo-Guevara R; Espinosa JR
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease.
    Rai SK; Savastano A; Singh P; Mukhopadhyay S; Zweckstetter M
    Protein Sci; 2021 Jul; 30(7):1294-1314. PubMed ID: 33930220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Previously uncharacterized interactions between the folded and intrinsically disordered domains impart asymmetric effects on UBQLN2 phase separation.
    Zheng T; Galagedera SKK; Castañeda CA
    Protein Sci; 2021 Jul; 30(7):1467-1481. PubMed ID: 34029402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology.
    Peng PH; Hsu KW; Wu KJ
    Am J Cancer Res; 2021; 11(8):3766-3776. PubMed ID: 34522448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Who's In and Who's Out-Compositional Control of Biomolecular Condensates.
    Ditlev JA; Case LB; Rosen MK
    J Mol Biol; 2018 Nov; 430(23):4666-4684. PubMed ID: 30099028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Spectrophotometric Turbidity Assay to Study Liquid-Liquid Phase Separation of UBQLN2 In Vitro.
    Raymond-Smiedy P; Bucknor B; Yang Y; Zheng T; Castañeda CA
    Methods Mol Biol; 2023; 2551():515-541. PubMed ID: 36310223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 14-3-3 Proteins are Potential Regulators of Liquid-Liquid Phase Separation.
    Huang X; Zheng Z; Wu Y; Gao M; Su Z; Huang Y
    Cell Biochem Biophys; 2022 Jun; 80(2):277-293. PubMed ID: 35142991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted modulation of protein liquid-liquid phase separation by evolution of amino-acid sequence.
    Lichtinger SM; Garaizar A; Collepardo-Guevara R; Reinhardt A
    PLoS Comput Biol; 2021 Aug; 17(8):e1009328. PubMed ID: 34428231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micellization: A new principle in the formation of biomolecular condensates.
    Yamazaki T; Yamamoto T; Hirose T
    Front Mol Biosci; 2022; 9():974772. PubMed ID: 36106018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions.
    Brocca S; Grandori R; Longhi S; Uversky V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions.
    Dao TP; Kolaitis RM; Kim HJ; O'Donovan K; Martyniak B; Colicino E; Hehnly H; Taylor JP; Castañeda CA
    Mol Cell; 2018 Mar; 69(6):965-978.e6. PubMed ID: 29526694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry.
    Poudyal RR; Pir Cakmak F; Keating CD; Bevilacqua PC
    Biochemistry; 2018 May; 57(17):2509-2519. PubMed ID: 29560725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-Silico Analysis of pH-Dependent Liquid-Liquid Phase Separation in Intrinsically Disordered Proteins.
    Pintado-Grima C; Bárcenas O; Ventura S
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation and Biochemical Characterization of Phase-Separated Droplets Formed by Nucleic Acid Binding Proteins: Using HP1 as a Model System.
    Sanulli S; Narlikar GJ
    Curr Protoc; 2021 May; 1(5):e109. PubMed ID: 33950570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Latest Findings on Phase Separation of Cytomechanical Proteins].
    Luo G; Zhou C
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 55(1):19-23. PubMed ID: 38322526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties.
    Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleolar- and Nuclear-Stress-Induced Membrane-Less Organelles: A Proteome Analysis through the Prism of Liquid-Liquid Phase Separation.
    Mokin YI; Gavrilova AA; Fefilova AS; Kuznetsova IM; Turoverov KK; Uversky VN; Fonin AV
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The liquid nucleome - phase transitions in the nucleus at a glance.
    Strom AR; Brangwynne CP
    J Cell Sci; 2019 Nov; 132(22):. PubMed ID: 31754043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.