These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 32696384)

  • 41. Micellization: A new principle in the formation of biomolecular condensates.
    Yamazaki T; Yamamoto T; Hirose T
    Front Mol Biosci; 2022; 9():974772. PubMed ID: 36106018
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Get closer and make hotspots: liquid-liquid phase separation in plants.
    Kim J; Lee H; Lee HG; Seo PJ
    EMBO Rep; 2021 May; 22(5):e51656. PubMed ID: 33913240
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Liquid-liquid phase separation: Orchestrating cell signaling through time and space.
    Su Q; Mehta S; Zhang J
    Mol Cell; 2021 Oct; 81(20):4137-4146. PubMed ID: 34619090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomolecular Condensates: Structure, Functions, Methods of Research.
    Gorsheneva NA; Sopova JV; Azarov VV; Grizel AV; Rubel AA
    Biochemistry (Mosc); 2024 Jan; 89(Suppl 1):S205-S223. PubMed ID: 38621751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Programming protein phase-separation employing a modular library of intrinsically disordered precision block copolymer-like proteins creating dynamic cytoplasmatic compartmentalization.
    Huber MC; Schreiber A; Stühn LG; Schiller SM
    Biomaterials; 2023 Aug; 299():122165. PubMed ID: 37290157
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A call to order: Examining structured domains in biomolecular condensates.
    Tibble RW; Gross JD
    J Magn Reson; 2023 Jan; 346():107318. PubMed ID: 36657879
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rational Tuning of the Concentration-independent Enrichment of Prion-like Domains in Stress Granules.
    Baer MH; Cascarina SM; Paul KR; Ross ED
    J Mol Biol; 2024 Sep; 436(18):168703. PubMed ID: 39004265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emerging Roles of Liquid-Liquid Phase Separation in Cancer: From Protein Aggregation to Immune-Associated Signaling.
    Lu J; Qian J; Xu Z; Yin S; Zhou L; Zheng S; Zhang W
    Front Cell Dev Biol; 2021; 9():631486. PubMed ID: 34235141
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation.
    Martin EW; Thomasen FE; Milkovic NM; Cuneo MJ; Grace CR; Nourse A; Lindorff-Larsen K; Mittag T
    Nucleic Acids Res; 2021 Mar; 49(5):2931-2945. PubMed ID: 33577679
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates.
    Wessén J; Pal T; Das S; Lin YH; Chan HS
    J Phys Chem B; 2021 May; 125(17):4337-4358. PubMed ID: 33890467
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The return of the rings: Evolutionary convergence of aromatic residues in the intrinsically disordered regions of RNA-binding proteins for liquid-liquid phase separation.
    Ho WL; Huang JR
    Protein Sci; 2022 May; 31(5):e4317. PubMed ID: 35481633
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components.
    Espinosa JR; Joseph JA; Sanchez-Burgos I; Garaizar A; Frenkel D; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13238-13247. PubMed ID: 32482873
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry.
    Abyzov A; Blackledge M; Zweckstetter M
    Chem Rev; 2022 Mar; 122(6):6719-6748. PubMed ID: 35179885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Data-Driven Hydrophobicity Scale for Predicting Liquid-Liquid Phase Separation of Proteins.
    Dannenhoffer-Lafage T; Best RB
    J Phys Chem B; 2021 Apr; 125(16):4046-4056. PubMed ID: 33876938
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Liquid-liquid phase separation in subcellular assemblages and signaling pathways: Chromatin modifications induced gene regulation for cellular physiology and functions including carcinogenesis.
    Chakraborty S; Mishra J; Roy A; Niharika ; Manna S; Baral T; Nandi P; Patra S; Patra SK
    Biochimie; 2024 Aug; 223():74-97. PubMed ID: 38723938
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Initiation of hnRNPA1 Low-Complexity Domain Condensation Monitored by Dynamic Light Scattering.
    Tsoi PS; Ferreon JC; Ferreon ACM
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 38999934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain.
    Mukherjee S; Schäfer LV
    Nat Commun; 2023 Sep; 14(1):5892. PubMed ID: 37735186
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phylogenetic convergence of phase separation and mitotic function in the disordered protein BuGZ.
    Chin AF; Zheng Y; Hilser VJ
    Protein Sci; 2022 Apr; 31(4):822-834. PubMed ID: 34984754
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Charge block-driven liquid-liquid phase separation - mechanism and biological roles.
    Koyama T; Iso N; Norizoe Y; Sakaue T; Yoshimura SH
    J Cell Sci; 2024 Jun; 137(11):. PubMed ID: 38855848
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Keeping up with the condensates: The retention, gain, and loss of nuclear membrane-less organelles.
    Lacroix E; Audas TE
    Front Mol Biosci; 2022; 9():998363. PubMed ID: 36203874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.