BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32696385)

  • 1. In Vitro Transition Temperature Measurement of Phase-Separating Proteins by Microscopy.
    Holland J; Crabtree MD; Nott TJ
    Methods Mol Biol; 2020; 2141():703-714. PubMed ID: 32696385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods and Strategies to Quantify Phase Separation of Disordered Proteins.
    Ceballos AV; McDonald CJ; Elbaum-Garfinkle S
    Methods Enzymol; 2018; 611():31-50. PubMed ID: 30471691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Walking Along a Protein Phase Diagram to Determine Coexistence Points by Static Light Scattering.
    Peran I; Martin EW; Mittag T
    Methods Mol Biol; 2020; 2141():715-730. PubMed ID: 32696386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Protein Phase Diagrams by Centrifugation.
    Milkovic NM; Mittag T
    Methods Mol Biol; 2020; 2141():685-702. PubMed ID: 32696384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Separation of Intrinsically Disordered Proteins.
    Posey AE; Holehouse AS; Pappu RV
    Methods Enzymol; 2018; 611():1-30. PubMed ID: 30471685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation.
    Brady JP; Farber PJ; Sekhar A; Lin YH; Huang R; Bah A; Nott TJ; Chan HS; Baldwin AJ; Forman-Kay JD; Kay LE
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):E8194-E8203. PubMed ID: 28894006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles.
    Nott TJ; Petsalaki E; Farber P; Jervis D; Fussner E; Plochowietz A; Craggs TD; Bazett-Jones DP; Pawson T; Forman-Kay JD; Baldwin AJ
    Mol Cell; 2015 Mar; 57(5):936-947. PubMed ID: 25747659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties.
    Dignon GL; Best RB; Mittal J
    Annu Rev Phys Chem; 2020 Apr; 71():53-75. PubMed ID: 32312191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid droplets as substrates for protein phase separation.
    Kamatar A; Bravo JPK; Yuan F; Wang L; Lafer EM; Taylor DW; Stachowiak JC; Parekh SH
    Biophys J; 2024 Jun; 123(11):1494-1507. PubMed ID: 38462838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition-dependent thermodynamics of intracellular phase separation.
    Riback JA; Zhu L; Ferrolino MC; Tolbert M; Mitrea DM; Sanders DW; Wei MT; Kriwacki RW; Brangwynne CP
    Nature; 2020 May; 581(7807):209-214. PubMed ID: 32405004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior.
    Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants.
    Kelley FM; Favetta B; Regy RM; Mittal J; Schuster BS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34916288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsically disordered proteins and biomolecular condensates as drug targets.
    Biesaga M; Frigolé-Vivas M; Salvatella X
    Curr Opin Chem Biol; 2021 Jun; 62():90-100. PubMed ID: 33812316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry.
    Poudyal RR; Pir Cakmak F; Keating CD; Bevilacqua PC
    Biochemistry; 2018 May; 57(17):2509-2519. PubMed ID: 29560725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connecting Coil-to-Globule Transitions to Full Phase Diagrams for Intrinsically Disordered Proteins.
    Zeng X; Holehouse AS; Chilkoti A; Mittag T; Pappu RV
    Biophys J; 2020 Jul; 119(2):402-418. PubMed ID: 32619404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-Liquid Phase Separation in Crowded Environments.
    André AAM; Spruijt E
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model for disordered proteins with strongly sequence-dependent liquid phase behavior.
    Statt A; Casademunt H; Brangwynne CP; Panagiotopoulos AZ
    J Chem Phys; 2020 Feb; 152(7):075101. PubMed ID: 32087632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.