These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32696388)

  • 21. Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation.
    Meng F; Bellaiche MMJ; Kim JY; Zerze GH; Best RB; Chung HS
    Biophys J; 2018 Feb; 114(4):870-884. PubMed ID: 29490247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of the Hereditary P301L Mutation on the Correlated Conformational Dynamics of Human Tau Protein Revealed by the Paramagnetic Relaxation Enhancement NMR Experiments.
    Kawasaki R; Tate SI
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. smFRET experiments of the RNA polymerase II transcription initiation complex.
    Malkusch N; Dörfler T; Nagy J; Eilert T; Michaelis J
    Methods; 2017 May; 120():115-124. PubMed ID: 28434999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perspective: Chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET.
    Schuler B
    J Chem Phys; 2018 Jul; 149(1):010901. PubMed ID: 29981536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers.
    Yuzwa SA; Cheung AH; Okon M; McIntosh LP; Vocadlo DJ
    J Mol Biol; 2014 Apr; 426(8):1736-52. PubMed ID: 24444746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyphosphate Initiates Tau Aggregation through Intra- and Intermolecular Scaffolding.
    Wickramasinghe SP; Lempart J; Merens HE; Murphy J; Huettemann P; Jakob U; Rhoades E
    Biophys J; 2019 Aug; 117(4):717-728. PubMed ID: 31400913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of altered solution conditions on tau conformational dynamics: Plausible implication on order propensity and aggregation.
    Jebarupa B; Muralidharan M; Srinivasu BY; Mandal AK; Mitra G
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):668-679. PubMed ID: 29630971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously.
    Götz M; Wortmann P; Schmid S; Hugel T
    Methods Enzymol; 2016; 581():487-516. PubMed ID: 27793290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nuclear Magnetic Resonance Spectroscopy for the Identification of Multiple Phosphorylations of Intrinsically Disordered Proteins.
    Danis C; Despres C; Bessa LM; Malki I; Merzougui H; Huvent I; Qi H; Lippens G; Cantrelle FX; Schneider R; Hanoulle X; Smet-Nocca C; Landrieu I
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins.
    Alston JJ; Soranno A; Holehouse AS
    Methods; 2021 Sep; 193():116-135. PubMed ID: 33831596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-directed double monoubiquitination of the repeat domain of the amyloid-forming protein tau impairs self-assembly and coacervation.
    Trivellato D; Floriani F; Barracchia CG; Munari F; D'Onofrio M; Assfalg M
    Bioorg Chem; 2023 Mar; 132():106347. PubMed ID: 36630781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing Differential Binding Mechanisms of Phenylalanine-Glycine-Rich Nucleoporins by Single-Molecule FRET.
    Tan PS; Lemke EA
    Methods Enzymol; 2018; 611():327-346. PubMed ID: 30471692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Adequate Account of Excluded Volume Is Necessary To Infer Compactness and Asphericity of Disordered Proteins by Förster Resonance Energy Transfer.
    Song J; Gomes GN; Gradinaru CC; Chan HS
    J Phys Chem B; 2015 Dec; 119(49):15191-202. PubMed ID: 26566073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling.
    Wilson H; Wang Q
    Nat Methods; 2021 Jul; 18(7):816-820. PubMed ID: 34127856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification of recombinant tau protein and preparation of Alzheimer-paired helical filaments in vitro.
    Barghorn S; Biernat J; Mandelkow E
    Methods Mol Biol; 2005; 299():35-51. PubMed ID: 15980594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring Effective Concentrations Enforced by Intrinsically Disordered Linkers.
    Sørensen CS; Kjaergaard M
    Methods Mol Biol; 2020; 2141():505-518. PubMed ID: 32696374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-Molecule Characterization and Super-Resolution Imaging of Alzheimer's Disease-Relevant Tau Aggregates in Human Samples.
    Böken D; Cox D; Burke M; Lam JYL; Katsinelos T; Danial JSH; Fertan E; McEwan WA; Rowe JB; Klenerman D
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202317756. PubMed ID: 38523073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau.
    Ferrari L; Stucchi R; Konstantoulea K; van de Kamp G; Kos R; Geerts WJC; van Bezouwen LS; Förster FG; Altelaar M; Hoogenraad CC; Rüdiger SGD
    Nat Commun; 2020 Jan; 11(1):571. PubMed ID: 31996674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recombinant production and purification of the human protein Tau.
    Ferrari L; Rüdiger SGD
    Protein Eng Des Sel; 2018 Dec; 31(12):447-455. PubMed ID: 31265107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zinc Binding to Tau Influences Aggregation Kinetics and Oligomer Distribution.
    Moreira GG; Cristóvão JS; Torres VM; Carapeto AP; Rodrigues MS; Landrieu I; Cordeiro C; Gomes CM
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31783644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.