These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Chemically modified dsRNA induces RNAi effects in insects in vitro and in vivo: A potential new tool for improving RNA-based plant protection. Howard JD; Beghyn M; Dewulf N; De Vos Y; Philips A; Portwood D; Kilby PM; Oliver D; Maddelein W; Brown S; Dickman MJ J Biol Chem; 2022 Sep; 298(9):102311. PubMed ID: 35921898 [TBL] [Abstract][Full Text] [Related]
10. Double strand RNA delivery system for plant-sap-feeding insects. Ghosh SK; Hunter WB; Park AL; Gundersen-Rindal DE PLoS One; 2017; 12(2):e0171861. PubMed ID: 28182760 [TBL] [Abstract][Full Text] [Related]
11. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust. Song H; Zhang J; Li D; Cooper AMW; Silver K; Li T; Liu X; Ma E; Zhu KY; Zhang J Insect Biochem Mol Biol; 2017 Jul; 86():68-80. PubMed ID: 28576656 [TBL] [Abstract][Full Text] [Related]
12. Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response. Lin YH; Huang JH; Liu Y; Belles X; Lee HJ Pest Manag Sci; 2017 May; 73(5):960-966. PubMed ID: 27470169 [TBL] [Abstract][Full Text] [Related]
13. Contributions of dsRNases to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria. Song H; Fan Y; Zhang J; Cooper AM; Silver K; Li D; Li T; Ma E; Zhu KY; Zhang J Pest Manag Sci; 2019 Jun; 75(6):1707-1717. PubMed ID: 30525311 [TBL] [Abstract][Full Text] [Related]
14. Comparison of strategies for enhancing RNA interference efficiency in Ostrinia nubilalis. Cooper AM; Song H; Yu Z; Biondi M; Bai J; Shi X; Ren Z; Weerasekara SM; Hua DH; Silver K; Zhang J; Zhu KY Pest Manag Sci; 2021 Feb; 77(2):635-645. PubMed ID: 33002336 [TBL] [Abstract][Full Text] [Related]
15. Feeding on soybean crops changed gut bacteria diversity of the southern green stinkbug (Nezara viridula) and reduced negative effects of some associated bacteria. Medina V; Rosso BE; Soria M; Gutkind GO; Pagano EA; Zavala JA Pest Manag Sci; 2022 Nov; 78(11):4608-4617. PubMed ID: 35837785 [TBL] [Abstract][Full Text] [Related]
16. Development of RNAi methods to control the harlequin bug, Murgantia histrionica. Howell JL; Mogilicherla K; Gurusamy D; Palli SR Arch Insect Biochem Physiol; 2020 Aug; 104(4):e21690. PubMed ID: 32394499 [TBL] [Abstract][Full Text] [Related]
17. Knockdown of double-stranded RNases (dsRNases) enhances oral RNA interference (RNAi) in the corn leafhopper, Dalbulus maidis. Dalaisón-Fuentes LI; Pascual A; Crespo M; Andrada NL; Welchen E; Catalano MI Pestic Biochem Physiol; 2023 Nov; 196():105618. PubMed ID: 37945254 [TBL] [Abstract][Full Text] [Related]
18. Delivery of short hairpin RNA in the neotropical brown stink bug, Euschistus heros, using a composite nanomaterial. Laisney J; Loczenski Rose V; Watters K; Donohue KV; Unrine JM Pestic Biochem Physiol; 2021 Aug; 177():104906. PubMed ID: 34301367 [TBL] [Abstract][Full Text] [Related]
19. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Luo Y; Chen Q; Luan J; Chung SH; Van Eck J; Turgeon R; Douglas AE Insect Biochem Mol Biol; 2017 Sep; 88():21-29. PubMed ID: 28736300 [TBL] [Abstract][Full Text] [Related]
20. An oral dsRNA delivery system based on chitosan induces G protein-coupled receptor kinase 2 gene silencing for Apolygus lucorum control. Qiao H; Zhao J; Wang X; Xiao L; Zhu-Salzman K; Lei J; Xu D; Xu G; Tan Y; Hao D Pestic Biochem Physiol; 2023 Aug; 194():105481. PubMed ID: 37532313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]