These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32696566)

  • 1. The Cancer Dependency Map enables drug mechanism-of-action investigations.
    Vazquez F; Boehm JS
    Mol Syst Biol; 2020 Jul; 16(7):e9757. PubMed ID: 32696566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating drug targets and mechanisms of action by genetic screens in mammalian cells.
    Kampmann M
    Chem Commun (Camb); 2017 Jun; 53(53):7162-7167. PubMed ID: 28487920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Amplifications Cause False Positives in CRISPR Screens.
    Sheel A; Xue W
    Cancer Discov; 2016 Aug; 6(8):824-6. PubMed ID: 27485003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a Genetic Scalpel for the Treatment of Cancer: A Translational Narrative Review.
    Mondal R; Brahmbhatt N; Sandhu SK; Shah H; Vashi M; Gandhi SK; Patel P
    Cureus; 2023 Dec; 15(12):e50031. PubMed ID: 38186450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of clustered regularly interspaced short palindromic repeats- associated protein 9 gene editing technology for treatment of HBV infection].
    Wang YD; Liang QF; Li ZY; Zhao CY
    Zhonghua Gan Zang Bing Za Zhi; 2018 Nov; 26(11):860-864. PubMed ID: 30616324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of CRISPR technologies in transplantation.
    Kuscu C; Kuscu C; Bajwa A; Eason JD; Maluf D; Mas VR
    Am J Transplant; 2020 Dec; 20(12):3285-3293. PubMed ID: 32484284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges.
    Cheng X; Fan S; Wen C; Du X
    Brief Funct Genomics; 2020 May; 19(3):209-214. PubMed ID: 32052006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A first-generation pediatric cancer dependency map.
    Dharia NV; Kugener G; Guenther LM; Malone CF; Durbin AD; Hong AL; Howard TP; Bandopadhayay P; Wechsler CS; Fung I; Warren AC; Dempster JM; Krill-Burger JM; Paolella BR; Moh P; Jha N; Tang A; Montgomery P; Boehm JS; Hahn WC; Roberts CWM; McFarland JM; Tsherniak A; Golub TR; Vazquez F; Stegmaier K
    Nat Genet; 2021 Apr; 53(4):529-538. PubMed ID: 33753930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The application of CRISPR/Cas9 genome editing technology in cancer research].
    Wang DY; Ma N; Hui Y; Gao X
    Yi Chuan; 2016 Jan; 38(1):1-8. PubMed ID: 26787518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR enables directed evolution in plants.
    Zhang Y; Qi Y
    Genome Biol; 2019 Apr; 20(1):83. PubMed ID: 31036063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR technology for immuno-oncology applications.
    Wang J; Balan V; Marincola F
    Methods Enzymol; 2020; 635():251-266. PubMed ID: 32122549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing.
    Bao M; Chen Q; Xu Z; Jensen EC; Liu C; Waitkus JT; Yuan X; He Q; Qin P; Du K
    ACS Sens; 2021 Jul; 6(7):2497-2522. PubMed ID: 34143608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E Pluribus Unum ("Out of Many, One"): CRISPR Modeling of Myeloid Expansion.
    Shin J; Corn JE
    Cell Stem Cell; 2017 Oct; 21(4):415-416. PubMed ID: 28985519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short communication: Determination of Salmonella clustered regularly interspaced short palindromic repeats (CRISPR) diversity on dairy farms in Wisconsin and Minnesota.
    Wehnes CA; Rehberger TG; Barrangou R; Smith AH
    J Dairy Sci; 2014 Oct; 97(10):6370-7. PubMed ID: 25108866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR tiling screen reveals cancer epigenetic 'Goldilocks' state.
    Barka A; Kohli RM; Shi J
    Trends Pharmacol Sci; 2023 Sep; 44(9):555-557. PubMed ID: 37328396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Campylobacter jejuni diversity by clustered regularly interspaced short palindromic repeats (CRISPR) from an animal farm.
    Yeh HY; Awad A; Rothrock MJ
    Vet Med Sci; 2021 Nov; 7(6):2381-2388. PubMed ID: 34510794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas Advancement in Molecular Diagnostics and Signal Readout Approaches.
    Ahmed MZ; Badani P; Reddy R; Mishra G
    J Mol Diagn; 2021 Nov; 23(11):1433-1442. PubMed ID: 34454111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.