These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32696584)

  • 41. Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/Li
    Umeshbabu E; Zheng B; Zhu J; Wang H; Li Y; Yang Y
    ACS Appl Mater Interfaces; 2019 May; 11(20):18436-18447. PubMed ID: 31033273
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium-sulfur batteries.
    Xu GL; Xu YF; Fang JC; Peng XX; Fu F; Huang L; Li JT; Sun SG
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10782-93. PubMed ID: 24090340
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spherical Metal Oxides with High Tap Density as Sulfur Host to Enhance Cathode Volumetric Capacity for Lithium-Sulfur Battery.
    Wang L; Song YH; Zhang BH; Liu YT; Wang ZY; Li GR; Liu S; Gao XP
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5909-5919. PubMed ID: 31944646
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Long-Life Room-Temperature Sodium-Sulfur Batteries by Virtue of Transition-Metal-Nanocluster-Sulfur Interactions.
    Zhang BW; Sheng T; Wang YX; Chou S; Davey K; Dou SX; Qiao SZ
    Angew Chem Int Ed Engl; 2019 Jan; 58(5):1484-1488. PubMed ID: 30537071
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries.
    Xu J; Shui J; Wang J; Wang M; Liu HK; Dou SX; Jeon IY; Seo JM; Baek JB; Dai L
    ACS Nano; 2014 Oct; 8(10):10920-30. PubMed ID: 25290080
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sulfur in Hyper-cross-linked Porous Polymer as Cathode in Lithium-Sulfur Batteries with Enhanced Electrochemical Properties.
    Zeng JH; Wang YF; Gou SQ; Zhang LP; Chen Y; Jiang JX; Shi F
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34783-34792. PubMed ID: 28906101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon Wrapping Effect on Sulfur/Polyacrylonitrile Composite Cathode Materials for Lithium Sulfur Batteries.
    Krishnaveni K; Subadevi R; Radhika G; Premkumar T; Raja M; Liu WR; Sivakumar M
    J Nanosci Nanotechnol; 2018 Jan; 18(1):121-126. PubMed ID: 29768823
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries.
    Lei J; Chen J; Zhang H; Naveed A; Yang J; Nuli Y; Wang J
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33702-33709. PubMed ID: 32633481
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A liquid metal-based self-adaptive sulfur-gallium composite for long-cycling lithium-sulfur batteries.
    Zhu M; Li S; Li B; Yang S
    Nanoscale; 2019 Jan; 11(2):412-417. PubMed ID: 30543252
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel Polyaniline-Silver-Sulfur Nanotube Composite as Cathode Material for Lithium-Sulfur Battery.
    Wang J; Xu RW; Wang CZ; Xiong JP
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771965
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanoscaled Na
    Wan H; Mwizerwa JP; Qi X; Xu X; Li H; Zhang Q; Cai L; Hu YS; Yao X
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12300-12304. PubMed ID: 29608273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach.
    Li W; Zheng G; Yang Y; Seh ZW; Liu N; Cui Y
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7148-53. PubMed ID: 23589875
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-Dimensionally Hierarchical Ni/Ni
    Li Z; Zhang S; Zhang J; Xu M; Tatara R; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38477-38485. PubMed ID: 29035508
    [TBL] [Abstract][Full Text] [Related]  

  • 54. C-S@PANI composite with a polymer spherical network structure for high performance lithium-sulfur batteries.
    Wang J; Yue K; Zhu X; Wang KL; Duan L
    Phys Chem Chem Phys; 2016 Jan; 18(1):261-6. PubMed ID: 26608624
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-Entropy Doping Boosts Ion/Electronic Transport of Na
    Ge X; Li H; Li J; Guan C; Wang X; He L; Li S; Lai Y; Zhang Z
    Small; 2023 Sep; 19(37):e2302609. PubMed ID: 37140083
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrasmall Li
    Jiang M; Liu G; Zhang Q; Zhou D; Yao X
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18666-18672. PubMed ID: 33876928
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-dimensional Co
    Pu J; Shen Z; Li J
    Nanotechnology; 2020 May; 31(29):295404. PubMed ID: 32241005
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nano-Confinement of Insulating Sulfur in the Cathode Composite of All-Solid-State Li-S Batteries Using Flexible Carbon Materials with Large Pore Volumes.
    Yamamoto M; Goto S; Tang R; Nomura K; Hayasaka Y; Yoshioka Y; Ito M; Morooka M; Nishihara H; Kyotani T
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38613-38622. PubMed ID: 34370442
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile Preparation of CuCo
    Zhang Q; Hu Y; Wang J; Dai Y; Pan F
    Chemistry; 2021 Sep; 27(54):13568-13574. PubMed ID: 33843077
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrastable Sodium-Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier.
    Guo Q; Li S; Liu X; Lu H; Chang X; Zhang H; Zhu X; Xia Q; Yan C; Xia H
    Adv Sci (Weinh); 2020 Jun; 7(11):1903246. PubMed ID: 32537400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.