These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32696785)

  • 1. OSTE+ for in situ SAXS analysis with droplet microfluidic devices.
    Lange T; Charton S; Bizien T; Testard F; Malloggi F
    Lab Chip; 2020 Aug; 20(16):2990-3000. PubMed ID: 32696785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-angle X-ray scattering in droplet-based microfluidics.
    Stehle R; Goerigk G; Wallacher D; Ballauff M; Seiffert S
    Lab Chip; 2013 Apr; 13(8):1529-37. PubMed ID: 23429654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lung on a Chip Development from Off-Stoichiometry Thiol-Ene Polymer.
    Rimsa R; Galvanovskis A; Plume J; Rumnieks F; Grindulis K; Paidere G; Erentraute S; Mozolevskis G; Abols A
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34064627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies.
    Ilhan-Ayisigi E; Yaldiz B; Bor G; Yaghmur A; Yesil-Celiktas O
    Colloids Surf B Biointerfaces; 2021 May; 201():111633. PubMed ID: 33639513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An innovative data processing method for studying nanoparticle formation in droplet microfluidics using X-rays scattering.
    Radajewski D; Hunter L; He X; Nahi O; Galloway JM; Meldrum FC
    Lab Chip; 2021 Nov; 21(22):4498-4506. PubMed ID: 34671784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Acquisition of X-Ray Scattering Data from Droplet-Encapsulated Protein Systems.
    Saldanha O; Graceffa R; Hémonnot CYJ; Ranke C; Brehm G; Liebi M; Marmiroli B; Weinhausen B; Burghammer M; Köster S
    Chemphyschem; 2017 May; 18(10):1220-1223. PubMed ID: 28295928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of bulk and microfluidic methods to monitor the phase behaviour of nanoparticles during digestion of lipid-based drug formulations using in situ X-ray scattering.
    Hong L; Sesen M; Hawley A; Neild A; Spicer PT; Boyd BJ
    Soft Matter; 2019 Nov; 15(46):9565-9578. PubMed ID: 31724682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices.
    Carlborg CF; Haraldsson T; Öberg K; Malkoch M; van der Wijngaart W
    Lab Chip; 2011 Sep; 11(18):3136-47. PubMed ID: 21804987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the biocompatibility of the polyurethane methacrylate and off-stoichiometry thiol-ene polymers by argon and nitrogen plasma treatment.
    Chen TF; Siow KS; Ng PY; Majlis BY
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():613-621. PubMed ID: 28629060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Off-Stoichiometry Microfluidic Devices for Bioanalytical Applications.
    de Campos RPS; Campos CDM; Almeida GB; da Silva JAF
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1470-1477. PubMed ID: 29293428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions.
    Yaghmur A; Hamad I
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of a polymer based on Off-Stoichiometry Thiol-Enes + Epoxy (OSTE+) for neural implants.
    Ejserholm F; Stegmayr J; Bauer P; Johansson F; Wallman L; Bengtsson M; Oredsson S
    Biomater Res; 2015; 19():19. PubMed ID: 26396744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Off-Stoichiometry Thiol-Ene Polymers: Inclusion of Anchor Groups Using Allylsilanes.
    Puchnin K; Ryazantsev D; Latipov E; Grudtsov V; Kuznetsov A
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformable neural interface based on off-stoichiometry thiol-ene-epoxy thermosets.
    Borda E; Medagoda DI; Airaghi Leccardi MJI; Zollinger EG; Ghezzi D
    Biomaterials; 2023 Feb; 293():121979. PubMed ID: 36586146
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Skou M; Skou S; Jensen TG; Vestergaard B; Gillilan RE
    J Appl Crystallogr; 2014 Aug; 47(Pt 4):1355-1366. PubMed ID: 25242913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.
    Gicquel Y; Schubert R; Kapis S; Bourenkov G; Schneider T; Perbandt M; Betzel C; Chapman HN; Heymann M
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences.
    Ghazal A; Lafleur JP; Mortensen K; Kutter JP; Arleth L; Jensen GV
    Lab Chip; 2016 Nov; 16(22):4263-4295. PubMed ID: 27731448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The material-enabled oxygen control in thiol-ene microfluidic channels and its feasibility for subcellular drug metabolism assays under hypoxia
    Kiiski I; Järvinen P; Ollikainen E; Jokinen V; Sikanen T
    Lab Chip; 2021 May; 21(9):1820-1831. PubMed ID: 33949410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel droplet-based approach to study phase transformations in lyotropic liquid crystalline systems.
    He V; Cadarso VJ; Seibt S; Boyd BJ; Neild A
    J Colloid Interface Sci; 2023 Jul; 641():459-469. PubMed ID: 36948101
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Radajewski D; Roblin P; Bacchin P; Meireles M; Hallez Y
    Lab Chip; 2023 Jul; 23(14):3280-3288. PubMed ID: 37387504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.