These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32697073)

  • 1. Development of KPF
    Hosaka T; Matsuyama T; Kubota K; Yasuno S; Komaba S
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34873-34881. PubMed ID: 32697073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of electrolyte decomposition products on the electrochemical performance of 4 V class K-ion batteries.
    Hosaka T; Matsuyama T; Tatara R; Gossage ZT; Komaba S
    Chem Sci; 2023 Aug; 14(33):8860-8868. PubMed ID: 37621426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconcentrated NaFSA-KFSA Aqueous Electrolytes for 2 V-Class Dual-Ion Batteries.
    Hosaka T; Noda A; Kubota K; Chiguchi K; Matsuda Y; Ida K; Yasuno S; Komaba S
    ACS Appl Mater Interfaces; 2022 May; 14(20):23507-17. PubMed ID: 35535989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries.
    Hosaka T; Kubota K; Kojima H; Komaba S
    Chem Commun (Camb); 2018 Jul; 54(60):8387-8390. PubMed ID: 29998275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the Salt Anion on K Metal Reactivity in EC/DEC Studied Using GC and XPS Analysis.
    Caracciolo L; Madec L; Gachot G; Martinez H
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57505-57513. PubMed ID: 34812611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of KPF
    Deng L; Zhang Y; Wang R; Feng M; Niu X; Tan L; Zhu Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22449-22456. PubMed ID: 31150200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paving the Way for K-Ion Batteries: Role of Electrolyte Reactivity through the Example of Sb-Based Electrodes.
    Madec L; Gabaudan V; Gachot G; Stievano L; Monconduit L; Martinez H
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34116-34122. PubMed ID: 30230309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Reaction Mechanisms on Graphite Anodes for K-Ion Batteries.
    Naylor AJ; Carboni M; Valvo M; Younesi R
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45636-45645. PubMed ID: 31718143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Climate High-Voltage Commercial Lithium-Ion Batteries Based on Propylene Carbonate Electrolytes.
    Fan H; Liu X; Luo L; Zhong F; Cao Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):574-580. PubMed ID: 34936327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for Harnessing High Rate and Cycle Performance from Graphite Electrodes in Potassium-Ion Batteries.
    Kaushik S; Kubota K; Hwang J; Matsumoto K; Hagiwara R
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14302-14312. PubMed ID: 35302758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Ions Induced Formation of K
    Wang T; He X; Zhou M; Ning J; Cao S; Chen M; Li H; Wang W; Wang K; Jiang K
    Adv Mater; 2024 May; ():e2401943. PubMed ID: 38768943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Stabilizing of the Solid-Electrolyte Interphase with Suppression of Graphite Exfoliation via Additive-Solvent Optimization in Li-Ion Batteries.
    Moharana S; West G; Menon AS; da Silva WL; Walker M; Loveridge MJ
    ACS Appl Mater Interfaces; 2023 Nov; 15(43):50185-50195. PubMed ID: 37851950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulating Solvent Molecule Coordination with KPF
    Gu M; Fan L; Zhou J; Rao AM; Lu B
    ACS Nano; 2021 May; 15(5):9167-9175. PubMed ID: 33938743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Potassium Storage Performance for K-Te Batteries
    Zhang Y; Liu C; Wu Z; Manaig D; Freschi DJ; Wang Z; Liu J
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16345-16354. PubMed ID: 33787196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes.
    Yamada Y; Usui K; Chiang CH; Kikuchi K; Furukawa K; Yamada A
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10892-9. PubMed ID: 24670260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes.
    Kaushik S; Matsumoto K; Hagiwara R
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries.
    Lindgren F; Xu C; Niedzicki L; Marcinek M; Gustafsson T; Björefors F; Edström K; Younesi R
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15758-66. PubMed ID: 27220376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium Fluoride and Carbonate Lead to Cell Failure in Potassium-Ion Batteries.
    Ells AW; May R; Marbella LE
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53841-53849. PubMed ID: 34735122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ Raman investigation of electrolyte solutions in the vicinity of graphite negative electrodes.
    Song HY; Fukutsuka T; Miyazaki K; Abe T
    Phys Chem Chem Phys; 2016 Oct; 18(39):27486-27492. PubMed ID: 27711581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-life potassium metal batteries enabled by anion-derived solid electrolyte interphase using concentrated ionic liquid electrolytes.
    Jeon J; Kang S; Koo B; Kim H; Hong ST; Lee H
    J Colloid Interface Sci; 2024 Sep; 670():617-625. PubMed ID: 38781652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.