These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Producing cadmium-free Indica rice by overexpressing OsHMA3. Lu C; Zhang L; Tang Z; Huang XY; Ma JF; Zhao FJ Environ Int; 2019 May; 126():619-626. PubMed ID: 30856449 [TBL] [Abstract][Full Text] [Related]
3. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Yan J; Wang P; Wang P; Yang M; Lian X; Tang Z; Huang CF; Salt DE; Zhao FJ Plant Cell Environ; 2016 Sep; 39(9):1941-54. PubMed ID: 27038090 [TBL] [Abstract][Full Text] [Related]
4. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain. Sui F; Zhao D; Zhu H; Gong Y; Tang Z; Huang XY; Zhang G; Zhao FJ J Exp Bot; 2019 May; 70(10):2857-2871. PubMed ID: 30840768 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Sasaki A; Yamaji N; Ma JF J Exp Bot; 2014 Nov; 65(20):6013-21. PubMed ID: 25151617 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3. Sun C; Yang M; Li Y; Tian J; Zhang Y; Liang L; Liu Z; Chen K; Li Y; Lv K; Lian X J Exp Bot; 2019 Nov; 70(21):6389-6400. PubMed ID: 31494666 [TBL] [Abstract][Full Text] [Related]
7. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Cao ZZ; Qin ML; Lin XY; Zhu ZW; Chen MX Environ Pollut; 2018 Jul; 238():76-84. PubMed ID: 29547864 [TBL] [Abstract][Full Text] [Related]
8. Zhu J; Zhao P; Nie Z; Shi H; Li C; Wang Y; Qin S; Qin X; Liu H BMC Plant Biol; 2020 Dec; 20(1):550. PubMed ID: 33287728 [TBL] [Abstract][Full Text] [Related]
9. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. Shao JF; Xia J; Yamaji N; Shen RF; Ma JF J Exp Bot; 2018 Apr; 69(10):2743-2752. PubMed ID: 29562302 [TBL] [Abstract][Full Text] [Related]
10. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. Ueno D; Koyama E; Yamaji N; Ma JF J Exp Bot; 2011 Apr; 62(7):2265-72. PubMed ID: 21127026 [TBL] [Abstract][Full Text] [Related]
11. Improved Cd, Zn and Mn tolerance and reduced Cd accumulation in grains with wheat-based cell number regulator TaCNR2. Qiao K; Wang F; Liang S; Wang H; Hu Z; Chai T Sci Rep; 2019 Jan; 9(1):870. PubMed ID: 30696904 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. Chang JD; Huang S; Konishi N; Wang P; Chen J; Huang XY; Ma JF; Zhao FJ J Exp Bot; 2020 Sep; 71(18):5705-5715. PubMed ID: 32542348 [TBL] [Abstract][Full Text] [Related]
13. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. Miyadate H; Adachi S; Hiraizumi A; Tezuka K; Nakazawa N; Kawamoto T; Katou K; Kodama I; Sakurai K; Takahashi H; Satoh-Nagasawa N; Watanabe A; Fujimura T; Akagi H New Phytol; 2011 Jan; 189(1):190-9. PubMed ID: 20840506 [TBL] [Abstract][Full Text] [Related]
14. Micro-XRF mapping and quantitative assessment of Cd in rice (Oryza sativa L.) roots. Tefera W; Liu T; Lu L; Ge J; Webb SM; Seifu W; Tian S Ecotoxicol Environ Saf; 2020 Apr; 193():110245. PubMed ID: 32092577 [TBL] [Abstract][Full Text] [Related]
15. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. Cao ZZ; Lin XY; Yang YJ; Guan MY; Xu P; Chen MX BMC Plant Biol; 2019 Jun; 19(1):250. PubMed ID: 31185911 [TBL] [Abstract][Full Text] [Related]
16. Multiomics reveals an essential role of long-distance translocation in regulating plant cadmium resistance and grain accumulation in allohexaploid wheat (Triticum aestivum). Hua YP; Chen JF; Zhou T; Zhang TY; Shen DD; Feng YN; Guan PF; Huang SM; Zhou ZF; Huang JY; Yue CP J Exp Bot; 2022 Dec; 73(22):7516-7537. PubMed ID: 36063365 [TBL] [Abstract][Full Text] [Related]
17. Gene limiting cadmium accumulation in rice. Ueno D; Yamaji N; Kono I; Huang CF; Ando T; Yano M; Ma JF Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16500-5. PubMed ID: 20823253 [TBL] [Abstract][Full Text] [Related]
18. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Abbas T; Rizwan M; Ali S; Zia-Ur-Rehman M; Farooq Qayyum M; Abbas F; Hannan F; Rinklebe J; Sik Ok Y Ecotoxicol Environ Saf; 2017 Jun; 140():37-47. PubMed ID: 28231504 [TBL] [Abstract][Full Text] [Related]
19. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. Liu CL; Gao ZY; Shang LG; Yang CH; Ruan BP; Zeng DL; Guo LB; Zhao FJ; Huang CF; Qian Q J Integr Plant Biol; 2020 Mar; 62(3):314-329. PubMed ID: 30791211 [TBL] [Abstract][Full Text] [Related]
20. Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low- and high-Cd wheat cultivars. Zhou J; Zhang C; Du B; Cui H; Fan X; Zhou D; Zhou J Environ Pollut; 2020 Oct; 265(Pt A):115045. PubMed ID: 32593926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]