BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32697092)

  • 1. Tailoring the Properties of Single-Wall Carbon Nanotube Samples through Structure-Selective Near-Infrared Photochemistry.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2020 Aug; 11(16):6492-6497. PubMed ID: 32697092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Dependent Thermal Defunctionalization of Single-Walled Carbon Nanotubes.
    Ghosh S; Wei F; Bachilo SM; Hauge RH; Billups WE; Weisman RB
    ACS Nano; 2015 Jun; 9(6):6324-32. PubMed ID: 26027688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum defects as versatile anchors for carbon nanotube functionalization.
    Mann FA; Galonska P; Herrmann N; Kruss S
    Nat Protoc; 2022 Mar; 17(3):727-747. PubMed ID: 35110739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dye Quenching of Carbon Nanotube Fluorescence Reveals Structure-Selective Coating Coverage.
    Zheng Y; Alizadehmojarad AA; Bachilo SM; Kolomeisky AB; Weisman RB
    ACS Nano; 2020 Sep; 14(9):12148-12158. PubMed ID: 32845604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chirality-Selective Functionalization of Semiconducting Carbon Nanotubes with a Reactivity-Switchable Molecule.
    Powell LR; Kim M; Wang Y
    J Am Chem Soc; 2017 Sep; 139(36):12533-12540. PubMed ID: 28844140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Templating colloidal sieves for tuning nanotube surface interactions and optical sensor responses.
    Gillen AJ; Siefman DJ; Wu SJ; Bourmaud C; Lambert B; Boghossian AA
    J Colloid Interface Sci; 2020 Apr; 565():55-62. PubMed ID: 31931299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoexcited Aromatic Reactants Give Multicolor Carbon Nanotube Fluorescence from Quantum Defects.
    Zheng Y; Bachilo SM; Weisman RB
    ACS Nano; 2020 Jan; 14(1):715-723. PubMed ID: 31887007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Defect-State Photophysics in Covalently Functionalized Single-Walled Carbon Nanotubes.
    Gifford BJ; Kilina S; Htoon H; Doorn SK; Tretiak S
    Acc Chem Res; 2020 Sep; 53(9):1791-1801. PubMed ID: 32805109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreactivity of unfunctionalized single-wall carbon nanotubes involving hydroxyl radical: chiral dependency and surface coating effect.
    Hou WC; Beigzadehmilani S; Jafvert CT; Zepp RG
    Environ Sci Technol; 2014 Apr; 48(7):3875-82. PubMed ID: 24628431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unified Quantification of Quantum Defects in Small-Diameter Single-Walled Carbon Nanotubes by Raman Spectroscopy.
    Sebastian FL; Becker F; Yomogida Y; Hosokawa Y; Settele S; Lindenthal S; Yanagi K; Zaumseil J
    ACS Nano; 2023 Nov; 17(21):21771-21781. PubMed ID: 37856164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2017 May; 8(9):1952-1955. PubMed ID: 28406641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications.
    Antonucci A; Kupis-Rozmysłowicz J; Boghossian AA
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11321-11331. PubMed ID: 28299937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Patterning of Carbon Nanotube Energy Levels by Covalent DNA Functionalization.
    Zheng Y; Bachilo SM; Weisman RB
    ACS Nano; 2019 Jul; 13(7):8222-8228. PubMed ID: 31244048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute Quantification of sp
    Sebastian FL; Zorn NF; Settele S; Lindenthal S; Berger FJ; Bendel C; Li H; Flavel BS; Zaumseil J
    J Phys Chem Lett; 2022 Apr; 13(16):3542-3548. PubMed ID: 35420437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical spin-state control of binding configuration for tailoring organic color center emission in carbon nanotubes.
    Zheng Y; Han Y; Weight BM; Lin Z; Gifford BJ; Zheng M; Kilin D; Kilina S; Doorn SK; Htoon H; Tretiak S
    Nat Commun; 2022 Aug; 13(1):4439. PubMed ID: 35915090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanine Quantum Defects in Carbon Nanotubes for Biosensing.
    Galonska P; Mohr JM; Schrage CA; Schnitzler L; Kruss S
    J Phys Chem Lett; 2023 Apr; 14(14):3483-3490. PubMed ID: 37011259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of Silver/Single-Wall Carbon Nanotube Electrical Contact Interfaces via Ion Irradiation.
    Cox ND; Cress CD; Rossi JE; Puchades I; Merrill A; Franklin AD; Landi BJ
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7406-7411. PubMed ID: 28157281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.